REMOVE PYTHON PERFORMANCE BARRIERS FOR MACHINE LEARNING

Anton Malakhov
Software Engineer at Intel® Distribution for Python*

Thanks to Sergey Maidanov, Ivan Kuzmin, Oleksandr Pavlyk, Chris Hogan

October 2016
Machine Learning

- Data is BIG
- Computers are cheap
- How to analyze this data?
Python is among the most popular programming languages

- Especially for prototyping
- But very limited use in production

Many computational problems require HPC/Big Data production environments

- Hire a team of Java/C++ programmers
 ... OR
- Ease access for Python researcher
 and/or have team of Python programmers to deploy optimized Python in production

Python is #1 programming language in hiring demand followed by Java and C++. And the demand is growing
Chapter 19. Performance Optimization of Black Scholes Pricing

\[
\begin{align*}
V_{up} &= S_0 \cdot \text{CDF} (d_1) - e^{-rT} \cdot X \cdot \text{CDF} (d_2) \\
V_{down} &= e^{-rT} \cdot X \cdot \text{CDF} (-d_2) - S_0 \cdot \text{CDF} (-d_1)
\end{align*}
\]

\[
\begin{align*}
d_1 &= \frac{\ln \left(\frac{S_0}{X} \right) + (r + \frac{\sigma^2}{2})T}{\sigma \sqrt{T}} \\
d_2 &= \frac{\ln \left(\frac{S_0}{X} \right) + (r - \frac{\sigma^2}{2})T}{\sigma \sqrt{T}}
\end{align*}
\]

Unlocking parallelism is essential to make Python useful in production.

Black Scholes Formula

MOPTIONS/SEC
PERFORMANCE-PRODUCTIVITY TECHNOLOGICAL OPTIONS

Numerical packages acceleration with Intel® performance libraries (MKL, DAAL, IPP)

Better parallelism and composable multi-threading (OpenMP, TBB, MPI)

Profiling Python and mixed language codes (VTune)

Language extensions for vectorization and multi-threading (Cython, Numba)

Integration with Big Data and Machine Learning platforms and frameworks (Spark, Hadoop, Theano, etc)
Easy, out-of-the-box access to high performance Python

- Prebuilt, optimized for numerical computing, data analytics, HPC
- Drop in replacement for your existing Python. No code changes required

Drive performance with multiple optimization techniques

- Accelerated NumPy/SciPy/Scikit-Learn with Intel® Math Kernel Library
- Data analytics with pyDAAL, enhanced thread scheduling with TBB, Jupyter* Notebook interface, Numba, Cython
- Scale easily with optimized MPI4Py and Jupyter notebooks

Faster access to latest optimizations for Intel architecture

- Distribution and individual optimized packages available through conda and Anaconda Cloud: anaconda.org/intel
- Optimizations upstreamed back to main Python trunk
INTEL DISTRIBUTION FOR PYTHON*: NUMERICAL BUILDING BLOCKS

Energy
Signal Processing
Financial Analytics
Engineering Design
Digital Content Creation
Science & Research
Numpy & Scipy Optimizations with Intel® MKL

Linear Algebra
- BLAS
- LAPACK
- ScALAPACK
- Sparse BLAS
- Sparse Solvers
 - Iterative
 - PARDISO® SMP & Cluster

Fast Fourier Transforms
- Multidimensional
- FFTW interfaces
- Cluster FFT

Vector Math
- Trigonometric
- Hyperbolic
- Exponential
- Log
- Power
- Root

Vector RNGs
- Multiple BRNG
- Support methods for independent streams creation
- Support all key probability distributions

Summary Statistics
- Kurtosis
- Variation coefficient
- Order statistics
- Min/max
- Variance-covariance

And More
- Splines
- Interpolation
- Trust Region
- Fast Poisson Solver

Configuration info:
- Versions: Intel® Distribution for Python 2017 Beta, icc 15.0
- Hardware: Intel® Xeon® CPU E5-2698 v3 @ 2.30GHz (2 sockets, 16 cores each, HT=OFF), 64 GB of RAM, 8 DIMMS of 8GB@2133MHz; Operating System: Ubuntu 14.04 LTS.
Intel® Xeon® Processor

Python* Performance as a Percentage of C/Intel® MKL for Intel® Xeon® Processors, Single Core (Higher Is Better)

Configuration Info: apt/atlas: installed with apt-get, Ubuntu 16.10, python 3.5.2, numpy 1.11.0, scipy 0.17.0; pip/openblas: installed with pip, Ubuntu 16.10, python 3.5.2, numpy 1.11.1, scipy 0.18.0; Intel Python: Intel Distribution for Python 2017; Hardware: Xeon: Intel Xeon CPU E5-2698 v3 @ 2.30 GHz (2 sockets, 16 cores each, HT=off), 64 GB of RAM, 8 DIMMS of 8GB@2133MHz; Xeon Phi: Intel Xeon Phi™ CPU 7210 1.30 GHz, 96 GB of RAM, 6 DIMMS of 16GB@1200MHz

Intel® Xeon Phi™ Product Family

Python* Performance as a Percentage of C/Intel® MKL for Intel® Xeon Phi™ Product Family, Single Core (Higher Is Better)
INTEL DISTRIBUTION FOR PYTHON*: MACHINE LEARNING

- Energy
- Signal Processing
- Financial Analytics
- Engineering Design
- Digital Content Creation
- Science & Research
What kind of popular algorithms exist in ML:

1. Descriptive statistics
 - Moments/correlations/quantiles
 - Including robust methods (for outliers)
2. Factorization/Dimensionality Reductions
 - Find which variables are relevant
3. Clustering
 - Find clusters of data – reduces big data to smaller sizes
4. Regression
 - Find functional relationships in presence of noise
5. Classification
 - Assigning fixed category by features
 - E.g. classification photos by animal/human
 - NN and DL – just part of it

Source: Rexer Analytics report
SCIKIT-LEARN

- Popular machine learning package
- All the popular ML algorithm groups

System info: 32x Intel® Xeon® CPU E5-2698 v3 @ 2.30GHz, disabled HT, 64GB RAM; Intel® Distribution for Python* 2017 Gold; Intel® MKL 2017.0.0; Ubuntu 14.04.4 LTS; Numpy 1.11.1; scikit-learn 0.17.1. See Optimization Notice.
PyTables
- is a package for managing hierarchical datasets and designed to efficiently and easily cope with extremely large amounts of data.

Pandas
- is for data manipulation and analysis; offers data structures and operations for manipulating numerical tables and time series

DistArray
- provides general multidimensional NumPy-like distributed arrays

Dask.DataFrame
- is a large parallel dataframe composed of many smaller Pandas dataframes, which may live on disk for larger-than-memory computing on a single machine, or in a cluster.
PyDAAL – Python Interfaces for Intel® DAAL

- **pyDAAL delivers significant performance boost**
 - Optimizes entire dataflow, from data acquisition to training and prediction
 - Covers different usage scenarios, including online and distributed processing (MPI4PY, PySpark)

- **Intel® DAAL available through**
 - Intel® Distribution for Python – preinstalled pyDAAL
 - Intel channel at Anaconda.org – pyDAAL package for Conda*
 - Intel® Parallel Studio XE – pyDAAL interface sources for custom package builds

System info:
- 32x Intel® Xeon®, CPU E5-2698 v3 @ 2.30GHz, disabled HT, 64GB RAM; Intel® Distribution for Python* 2017 Gold; Intel® MKL 2017.0.0; Ubuntu 14.04.4 LTS; Numpy 1.11.1; scikit-learn 0.17.1.
INTEL DISTRIBUTION FOR PYTHON*: PARALLELISM
DISTRIBUTED PARALLELISM

- Intel® MPI library
 - Mpi4py
 - ipyparallel
- We also support:
 - PySpark -- Python interfaces for Spark - a fast and general engine for large-scale data processing.
 - Dask -- a flexible parallel computing library for analytic computing.
APPLICATION-LEVEL PARALLELISM

- “speedup is limited by the serial portion of the work” - Amdahl
 - Python is slow for its serial regions
 - For efficiency, parallelism is needed on application level

- Dask.Array - implements a subset of the NumPy ndarray interface using blocked algorithms, chunking the large array into smaller ones and executing these blocks using multi-threading. Implicit

- Joblib, ThreadPool – explicit Python parallelism

- Python’s global lock is not a big issue with native computations
OVER-SUBSCRIPTION ISSUE

- E.g. Dask → Numpy → MKL → OpenMP

- Parallelism on two levels:
 - Dask creates own threads
 - MKL/OpenMP creates threads

- #Software Threads > #HW Threads
 - i.e. parallel regions run in parallel
 - Either performance penalty
 - or fails to create that many threads:

OMP: Error #34: System unable to allocate necessary resources for OMP thread:
OMP: System error #11: Resource temporarily unavailable
OMP: Hint: Try decreasing the value of OMP_NUM_THREADS.
INTEL® TBB: PARALLELISM ORCHESTRATION IN PYTHON ECOSYSTEM

python -m TBB Application.py

- Numpy
- Scipy
- PyDAAL
- Joblib
- Dask
- Thread Pool
- Intel® MKL
- Intel® DAAL
- Intel® TBB module for Python
- Numba
- Intel® TBB runtime
Example: QR Performance

```python
import time, numpy as np
x = np.random.random((100000, 2000))
t0 = time.time()
q, r = np.linalg.qr(x)
test = np.allclose(x, q.dot(r))
assert(test)
print(time.time() - t0)
```

```python
import time, dask, dask.array as da
x = da.random.random((100000, 2000), chunks=(10000, 2000))
t0 = time.time()
q, r = da.linalg.qr(x)
test = da.all(da.isclose(x, q.dot(r)))
assert(test.compute()) # threaded
print(time.time() - t0)
```
INTEL DISTRIBUTION FOR PYTHON*: PYTHON COMPILERS
NUMBA: JIT COMPILER FOR PYTHON

- With a few annotations, array-oriented and math-heavy Python code can be just-in-time compiled to native machine instructions, similar in performance to C, C++ and Fortran, without having to switch languages or Python interpreters.
- LLVM-based
- Intel optimized with Intel® TBB

Configuration Info: - Versions: Intel(R) Distribution for Python 2.7.11 2017, Beta (Mar 04, 2016), MKL version 11.3.2 for Intel Distribution for Python 2017, Beta, Fedora* built Python*: Python 2.7.10 (default, Sep 8 2015), NumPy 1.9.2, SciPy 0.14.1, multiprocessing 0.70a1 built with gcc 5.1.1; Hardware: 96 CPUs (HT ON), 4 sockets (12 cores/socket), 1 NUMA node, Intel(R) Xeon(R) E5-4657L v2@2.40GHz, RAM 64GB, Operating System: Fedora release 23 (Twenty Three)
Cython is an optimising static compiler for both the Python programming language and the extended Cython programming language (based on Pyrex). It makes writing C extensions for Python as easy as Python itself.

- Cython generates C code which can be compiled with Intel C Compiler.
PYTHON PROFILING
Right tool for high performance application profiling at all levels

- Function-level and line-level hotspot analysis, down to disassembly
- Call stack analysis
- Low overhead
- Mixed-language, multi-threaded application analysis
- Advanced hardware event analysis for native codes (Cython, C++, Fortran) for cache misses, branch misprediction, etc.

<table>
<thead>
<tr>
<th>Feature</th>
<th>cProfile</th>
<th>Line_profiler</th>
<th>Intel® VTune™ Amplifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profiling technology</td>
<td>Event</td>
<td>Instrumentation</td>
<td>Sampling, hardware events</td>
</tr>
<tr>
<td>Analysis granularity</td>
<td>Function-level</td>
<td>Line-level</td>
<td>Line-level, call stack, time windows, hardware events</td>
</tr>
<tr>
<td>Intrusiveness</td>
<td>Medium (1.3-5x)</td>
<td>High (4-10x)</td>
<td>Low (1.05-1.3x)</td>
</tr>
<tr>
<td>Mixed language programs</td>
<td>Python</td>
<td>Python</td>
<td>Python, Cython, C++, Fortran</td>
</tr>
</tbody>
</table>
COLLABORATIVE FILTERING CASE STUDY
Recommendations of useful purchases

- Amazon, Netflix, Spotify,... use this all the time
COLLABORATION FILTERING

• Processes users' past behavior, their activities and ratings
• Predicts, what user might want to buy depending on his/her preferences
COLLABORATION FILTERING: THE ALGORITHM

- Phase 1: Training
 - Reading of items and its ratings
 - Item-to-item similarity estimation
- Phase 2: Recommendation
 - Reading of user's ratings
 - Generation of recommendations

- Input data was taken from http://grouplens.org/:
 - 1,000,000 ratings.
 - 6040 users
 - 3260 movies
PHASE 1: PROFILING PURE PYTHON COLLABORATIVE FILTERING

Items similarity assessment (similarity matrix computation) is the main hotspot

Configuration Info: - Versions: Red Hat Enterprise Linux* built Python*: Python 2.7.5 (default, Feb 11 2014), NumPy 1.7.1, SciPy 0.12.1, multiprocessing 0.70a1 built with gcc 4.8.2; Hardware: 24 CPUs (HT ON), 2 Sockets (6 cores/socket), 2 NUMA nodes, Intel(R) Xeon(R) X5680@3.33GHz, RAM 24GB, Operating System: Red Hat Enterprise Linux Server release 7.0 (Maipo)
Phase 1: Profiling Pure Python Collaborative Filtering

This loop is major bottleneck. Use appropriate technologies (NumPy/SciPy/Scikit-Learn or Cython/Numba) to accelerate.

Configuration Info:
- Versions: Red Hat Enterprise Linux* built Python*:
 Python 2.7.5 (default, Feb 11 2014), NumPy 1.7.1, SciPy 0.12.1,
 multiprocessing 0.70a1 built with gcc 4.8.2;
- Hardware: 24 CPUs (HT ON), 2 Sockets (6 cores/socket), 2 NUMA nodes, Intel(R) Xeon(R) X5680@3.33GHz,
 RAM 24GB, Operating System: Red Hat Enterprise Linux Server release 7.0 (Maipo)
PHASE 1: PYTHON + NUMPY (MKL)

- Much faster!
- The most compute-intensive part takes ~5% of all the execution time

Configuration info: 96 CPUs (HT ON), 4 Sockets (12 cores/socket), 1 NUMA nodes, Intel(R) Xeon(R) E5-4657L v2@2.40GHz, RAM 64GB, Operating System: Fedora release 23 (Twenty Three)
Phase 2: Generation of User Recommendations

Define custom compute step
@numba.guvectorize(('f8[:],f8[:]'), '(),()', target="parallel")
def masking(x, rating):
 if rating[0]:
 x[0] = 0

Numpy arrays for 3260 items and 500K users
topk_matrix = numpy.empty((3260, 3260), dtype='f8')
user_ratings = numpy.empty((3260, 500000), dtype='f8')

Compute recommendation
x = topk_matrix.dot(user_ratings) # call Numpy
masking(x, user_ratings) # call Numba
recommendation_ids = x.argmax(axis=0)

User requests per second, Intel® Xeon Phi™

Configuration Info: Hardware: Intel® Xeon Phi™ CPU 7250, 68 cores @1.40GHz, 96GB DDR4-2400
Versions: Intel® Distribution for Python 2017 Gold, Intel® MKL version 2017.0.0, libopenblas-r0-39a31c03.2.18.so, Python 3.5.2, NumPy 1.11.1, SciPy 0.18.0; Red Hat Enterprise Linux Server 7.2
Phase 2: Even faster with Dask, multi-threaded application

```python
# Define custom compute step
@numba.guvectorize('(f8[:],f8[:])', '(),()', target="parallel")
def masking(x, rating):
    if rating[0]:
        x[0] = 0

# use dask.array instead of numpy array
chunks = (3260, 5000)  # 5000 users per task here
topk_matrix = dask.array.empty((3260, 3260), chunks)
user_ratings = dask.array.empty((3260, 500000), chunks)

# Dask array program is like Numpy but multi-threaded
x = topk_matrix.dot(user_ratings)
dask.array.map_blocks(masking, x, user_ratings)
recommendation_ids = x.argmax(axis=0).compute()
```
PHASE 2: MORE PERFORMANCE WITH NESTED PARALLELISM

User requests per second

- **1x**
 - Users per task: Default (OpenMP)
 - numpy

- **2.46x**
 - Users per task: Default (OpenMP)
 - 10000

- **3.10x**
 - Users per task: numpy
 - 10000

- **3.95x**
 - Users per task: dask
 - -m TBB mode
 - 5000

Hardware: Intel® Xeon® CPU E7-8890 v4, 4x24 cores @ 2.20GHz (4GHz max), HT is OFF, 768 GB DDR4; Versions: Intel® Distribution for Python* 2017 Gold, Intel® MKL version 2017.0.0, Python 3.5.2, NumPy 1.11.1, SciPy 0.18.0, Numba 0.26.0, llvmlite 0.11.0, Dask 0.11.0, CentOS Linux release 7.2.1511 (Core).
MORE REALISTIC APPROACH: DISTRIBUTED COLLABORATIVE FILTERING

- Big Data doesn’t fit one node efficiently
- Distributed algorithms are hard to implement
- Using out-of-the-box PyDAAL algorithm instead
PHASE 1: COLLABORATIVE FILTERING WITH PyDAAL AND MPI4PY

- PyDAAL implements Implicit Alternating Least Squares algorithm
 - Single node and distributed variant
 - Handles sparse and dense datasets
 - See code samples for details

![Distributed implicit ALS algorithm speedup, times](image)

<table>
<thead>
<tr>
<th>Configuration Info:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware (each node): Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz, 2x18 cores, HT is ON, RAM 128GB;</td>
</tr>
<tr>
<td>Versions: Oracle Linux Server 6.6, Intel® DAAL 2017 Gold, Intel® MPI 5.1.3;</td>
</tr>
<tr>
<td>Interconnect: 1 GB Ethernet</td>
</tr>
</tbody>
</table>
WORK IN PROGRESS
Intel is working on IA optimization for deep learning

- Theano
 - https://github.com/intel/theano Intel fork
- Caffe
 - https://github.com/intel/caffe Intel fork
- TensorFlow
 - works great with Intel® Distribution for Python*
- Neon
 - Intel acquired Nervana Systems:
 https://www.nervanasys.com/intel-nervana/
CAFFE ACCELERATED POWERED BY INTEL® MKL (TRAINING)

Caffe/AlexNet single node training performance

Performance speedup

- Intel® Xeon® E5-2699 v4
 - Out-of-the-box
 - +Intel MKL 11.3.3
 - +Intel MKL 2017

- Intel® Xeon Phi™ 7250
 - +Intel MKL 2017

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance. *Other names and brands may be property of others

Configurations:
- 2 socket system with Intel® Xeon Processor E5-2699 v4 (22 Cores, 2.2 GHz), 128 GB memory, Red Hat® Enterprise Linux 6.7, BVLC Caffe, Intel Optimized Caffe framework, Intel® MKL 11.3.3, Intel® MKL 2017
- Intel® Xeon Phi™ Processor 7250 (68 Cores, 1.4 GHz, 16GB MCDRAM), 128 GB memory, Red Hat® Enterprise Linux 6.7, Intel® Optimized Caffe framework, Intel® MKL 2017

All numbers measured without taking data manipulation into account.
CAFFE ACCELERATED POWERED BY INTEL® MKL (INFEERENCE)

Caffe/AlexNet single node inference performance

Performance speedup

- Intel Xeon E5-2699v4
 - Out-of-the-box: 7.5x
 - +Intel MKL 11.3.3: 2.2x
 - +Intel MKL 2017: 1.9x

- Intel Xeon Phi 7250
 - +Intel MKL 2017: 31x

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance. *Other names and brands may be property of others.

Configurations:
- 2 socket system with Intel® Xeon® Processor E5-2699 v4 (22 Cores, 2.2 GHz), 128 GB memory, Red Hat* Enterprise Linux 6.7, BVLC Caffe, Intel Optimized Caffe framework, Intel® MKL 11.3.3, Intel® MKL 2017
- Intel® Xeon Phi™ Processor 7250 (68 Cores, 1.4 GHz, 16GB MCDRAM), 128 GB memory, Red Hat* Enterprise Linux 6.7, Intel® Optimized Caffe framework, Intel® MKL 2017

All numbers measured without taking data manipulation into account.
BETTER PERFORMANCE IN DEEP NEURAL NETWORK WORKLOADS WITH MCDRAM (SPECIAL MEMORY)

Caffe/AlexNet relative training performance on Intel® Xeon Phi™ Processor 7250

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of these factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance. *Other names and brands may be property of others

Configurations:
• Intel® Xeon Phi™ Processor 7250 (68 Cores, 1.4 GHz, 16GB MCDRAM), 128 GB memory, Red Hat® Enterprise Linux 6.7, Intel® Optimized Caffe framework, Intel® MKL 2017 Beta Update 1

All numbers measured without taking data manipulation into account.
CALL FOR ACTION
Download and use it! It’s free
 - https://software.intel.com/python-distribution

Easy to install with Anaconda
 - https://anaconda.org/intel/

Commercial support via Intel® Parallel Studio 2017

"I expected Intel’s numpy to be fast but it is significant that plain old python code is much faster with the Intel version too."

Dr. Donald Kinghorn, Puget Systems Review

Intel’s Python distribution turbocharges data science

Intel Distribution for Python adds Intel’s high-speed math libraries to the existing, highly convenient Anaconda version for data scientists

HPC Podcast Looks at Intel’s Pending Distribution of Python

Yes, Intel is doing their own Python build! It is still in beta but I think it’s a great idea.Yeah, it’s important!
INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

For more complete information about compiler optimizations, see our Optimization Notice at https://software.intel.com/en-us/articles/optimization-notice#opt-en.

Copyright © 2016, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.